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Computational Design of (100) Alloy Surfaces for Hydrogen 
Evolution Reaction
Hao Lia,b, Shaopeng Xua, Min Wanga, Ziheng Chenc, Fengfeng Jia, Kewei Chengd, Zhengyang Gaoa, 
Zhao Dinge, and Weijie Yanga,*

With the rapid development of kinetically-controlled techniques, synthesis of cubic bimetalllic catalysts with tunable 
component and composition becomes possible. In recent years, many of the bimetallic alloy catalysts with (100) as the 
predominant facet have shown outstanding electrocatalytic activity and stability. However, alloying effects on the activity 
at (100) were less explored, compared to the well-studied closed-packed surfaces. Here, using density functional theory 
(DFT) calculations, we explore the catalytic activity of bimetallic alloy (100) surfaces for electrocatalytic hydrogen evolution 
reaction (HER). The ensemble and compositional effects of (100) facets alloyed by strong- (Pd and Pt) and weak-binding (Ag, 
Au, and Cu) transition metals were studied. Based on DFT calculations, the catalytic activity of bimetallic alloys for HER were 
systematically investigated using H binding energy as the reaction descriptor, at all of the typical surface ensembles on (100). 
Our results suggest that PdxAg1-x and PdxAu1-x(100) have promising theoretical HER activity in acidic media, due to the 
presence of highly active four-fold ensembles which reach the peak of the HER volcano activity plot. The electronic structure 
and stability of the alloys with predicted promising HER activities were studied. Furthermore, based on the DFT-calculated 
database, we performed feature analysis and developed a robust machine learning model which can help to predict HER 
activities of those out-of-sample alloys. Most importantly, this study provides helpful guideline for the design of (100) 
dominated bimetallic alloys towards promising HER activity.   

1. Introduction
Bimetallic cubic catalyst is a new type of materials for 

electrochemistry due to the rapid development of advanced 
kinetically-controlled synthesis techniques.1-3 As the 
predominant facet of cubic catalysts, bimetallic (100) has more 
complicated heterogeneous surfaces due to the presence of 
four-fold adsorption sites, compared to the simpler three-fold 
sites on (111).4 Although (100) usually has higher surface energy 
than those close-packed surfaces,5 kinetically-controlled 
synthesis is able to form a metastable cubic nanoparticle (NP) 
structure with the use of proper capping element such as 
bromine.6, 7 Meanwhile, some commonly seen low energy 
structures (e.g., cuboctahedron)8 also have a large ratio of (100) 
facets. Once a cubic shape is formed, many of the bimetallic 
(100) surfaces have shown promising stability and durability in 
electrocatalytic experiments.4, 9-19 Meanwhile, with advanced 
synthesis methods, both classically miscible and immiscible 
bimetallic alloys with well-defined NP structures have been 
successfully synthesized and reported recently, such as PdAu,20 
PdAg,21 PdCu,22 PtAu,10 PtAg,23 PtCu,24 RhAu,11 RhAg,12 IrAg,13 
IrCu,25 PdRh,26 RhIr,15 and PdIr.27 Based on some recent 
combined experimental and computational studies, it was 

found that once an alloyed cubic structure is formed, the 
geometry of a NP is kinetically trapped, making the surface 
difficult to collapse into a more close-packed structure. 
Meanwhile, some of the synthesized bimetallic structures are 
not easy to segregate under mild temperature, due to the 
proven high kinetic barriers for these processes.28-30 These 
make some of the cubic alloy NPs ideal for electrocatalysis – an 
electrocatalytic reaction environment is usually with ambient 
conditions, which does not provide high temperature to 
overcome these kinetic barriers of segregation or collapsing. 
Therefore, (100) dominated NPs can be a type of potential 
candidates for industrially important electrocatalysis. 

Recently, there are some outstanding experimental studies 
which have shown that alloy cubic NPs could be promising 
catalysts for electrocatalysis. Rodene et al.31 realized the 
synthesis of cubic Ni1−xMox alloy NPs for water splitting to 
produce hydrogen. They found that the hydrogen evolution 
reaction (HER) activity increased with the increasing Mo 
content until x=6.6%. Among the candidate catalysts, cubic 
Ni0.93Mo0.07 NPs showed the best catalytic performance, with 
the overpotentials of −64 and −85 mV respectively at −10 and 
−20 mA/cm2. Some cubic nanomaterials (e.g., Cu-Ni-CoSex, Ni-
CoSex, and Cu-CoSex nanocubes) were prepared by Qian et al.32 
for dye-sensitized solar cells and HER. Their research showed 
that Cu-Ni-CoSex could accelerate HER, with an ultralow 
overpotential (50.2 mV at 10 mA/cm2). In the research of Yang 
et al.,33 using a simple two-step method, cubic iron carbides 
wrapped in N-doped carbon shell were successfully 
synthesized. Their results showed that the overpotential of the 
catalyst was 209 mV at 10 mA/cm2. Cao et al.34 explored the 
catalytic activity of face-centred cubic Pd-Ni-P NPs for HER. It 
was shown that Pd-Ni-P NPs is a promising catalyst, which can 
promote HER with the overpotential of only 32 mV at 10 
mA/cm2. All of these studies have suggested that the low-index 
facets (predominantly, the (100) facet) at cubic NPs possess 
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highly active sites for electrocatalysis. For acidic HER, it has been 
shown that strong-binding transition metals (e.g., Pd and Rh) 
tend to over-bind H, leading to H poisoning which hinders the 
subsequent evolution step.4 On the contrary, most of the weak-
binding transition metals (e.g., Ag, Au, and Cu) bind H too 
weakly, leading to difficulty in the proton-electron combination 
step. Therefore, alloying these strong- and weak-binding 
elements together could be a promising method which results 
in a well-tuned adsorption strength that provides an ideal H 
binding for HER.4, 17, 35 However, relevant theoretical studies 
were less-explored on alloyed (100) surfaces, compared to (111). 
Although there were several studies focusing on the design of 
alloyed surfaces for HER,36-38 to the best of our knowledge, very 
few study has focused on the design of HER catalyst at a more 
detailed ensemble scale. 

Recent studies have shown that atomic ensemble effect (the 
specific composition of an alloyed adsorption site on surface) is 
the predominant effect for (111) surfaces alloyed by strong- and 
weak-binding transition metals.9, 17, 39 This is because a specific 
surface ensemble directly determines the adsorption 
environment  of an adsorbate, while the electronic effect4 
(contributed from the elements outside of the site) and strain 
effect18 (originated in the lattice difference between the two 
elements) have less significant influence on the adsorbate 
binding. This new insight helps to understand why many of the 
alloy NPs showed outstanding catalytic activities, compared to 
their monometallic counterparts.10-16 However, to the best of 
our knowledge, very few study has focused on the alloying 
effect at (100) surfaces,19, 40 due to the more complicated 
composition of four-fold adsorption sites (Fig. 1a) as compared 
to the simpler three-fold sites on (111). For example, a 
bimetallic alloy (100) has six different symmetries at a four-fold 
ensemble, while there are only four different symmetries at the 
three-fold site. This leads to a much higher computational cost 
on the studies for bimetallic cubic catalysts. 

In this paper, bimetallic (100) surfaces alloyed by strong- 
(Pd and Pt) and weak-binding (Ag, Au, and Cu) transition metals 
with different compositions were studied using DFT calculations. 
The reason of choosing this type of alloy is that compared to 
those close-packed structures, (100) has lower coordination 
environment at the surface, leading to over-binding of 
adsorbate at the strong-binding elements. However, alloying 
weak-binding elements into strong-binding surface can lead to 
a tunable adsorbate binding at an appropriate surface 
ensemble, which could lead to an optimal adsorbate binding for 
a catalytic reaction due to the Sabatier principle.41 The outline 
of this paper is shown as follows: first, H binding energies on 
different binding sites of bimetallic alloys with different 
compositions were calculated at each type of four-fold 
ensemble on (100). Second, using HER as a probe reaction, 
catalytic activities of bimetallic alloys for HER were analysed 
through the calculated H binding energies, HER volcano model, 
heat matrix, and free energy variation. Third, the electronic 
structures of bimetallic alloy with the best predicted activities 
were investigated to explain their improved catalytic 
performance. Finally, machine learning (ML) models based on 
the calculated database were developed to predict other 

different bimetallic alloys with promising HER activity. This 
computational screening research based on DFT calculations 
and ML predictions can effectively guide the design and 
synthesis of bimetallic alloys for HER.

2. Computational and Modelling Methods
2.1 DFT Calculations 

All of the DFT calculations were performed in Vienna Ab 
initio Simulation Package (VASP5.4.4) with Perdew-Burke-
Ernzerhof (PBE) functional and projector augmented wave 
(PAW) methods.42-44 The kinetic energy cutoff was chosen as 
400 eV. To describe the electron orbit occupation, Gaussian 
smearing with a width of 0.05 eV (σ=0.2 eV) was defined. 
Structural optimizations were carried out in a (3×3×1) 
Monkhorst−Pack k-point,45 with a convergence standard of 0.05 
eV/Å. The total energy convergence criteria in VASP (EDIFF) was 
set as 10-5. Convergence tests with spin-polarization and stricter 
criterion were performed (Table S1); no significant change was 
found in the binding energies and optimized geometries. Since 
van der Waals correction contributes little to H adsorption on 
transition metal surfaces, and PBE functional showed relatively 
small errors in H binding energy calculations as compared to 
experimental benchmarking database,46 this correction is not 
included in our calculations. We also tested our current results 
with a DFT-D2 method on Pd(100),47 and only found that the H 
binding varies less than 0.1 eV without configuration change.

A four-layer slab model with the upper two layers allowed 
to relax was modelled to represent the catalytic surfaces, which 
was proven to be reasonable in previous studies.48 Thicker slabs 
were tested in our previous studies; no significant change was 
found in the binding energies and optimized geometries.49 To 
eliminate the error caused by periodic mirror images, a vacuum 
layer of at least 12 Å was built. Bimetallic alloys were composed 
of Pd, Pt, Ag, Au, and Cu with different ratios of 25%, 50%, and 
75%, and each model of bimetallic alloy contains 64 atoms. The 
schematic pictures of randomly sampled bimetallic alloys are 
shown in Fig. 1a. To obtain abundant alloyed configurations, at 
least 15 random structures were generated for each 
composition based on the  Atomic Simulation Environment (ASE) 
library,50 building at least 270 different structures of bimetallic 
alloys. All of the bare structures were re-relaxed with our 
calculation parameters after they were generated. All of the 
binding sites of H were sampled from these surfaces. Our 
previous studies have shown that this sampling method is 
helpful for analysing the uncertainty of various alloyed 
structures, which is representative for the alloy catalysts 
synthesized by kinetically-controlled methods.9-16

For each ensemble composition at a four-fold site, at least 
three binding sites were sampled for the binding energy 
calculations. In total, more than 450 binding energies of H were 
calculated. The binding energy of H (Eb) was calculated 
according to Eb = Etot- Esur – EH2, where Etot, Esur, and EH2 are the 
total energies of the adsorption system, the bare surface, and a 
H2 molecule in vacuum, respectively. All of the structural 
information are stored in our online database.51 To acquire the 
Gibbs free energy of HER, the entropic and ZPE corrections for 

Page 2 of 11Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
8 

Ju
ly

 2
02

0.
 D

ow
nl

oa
de

d 
on

 8
/1

/2
02

0 
12

:1
0:

55
 A

M
. 

View Article Online
DOI: 10.1039/D0TA04615A

https://doi.org/10.1039/d0ta04615a


Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

transition metal (+0.24 eV) was applied to the calculated H binding 
energies.52

2.2 ML Modelling
ML modelling were carried out using a three-layer artificial 

neural network with a back-propagation algorithm (BPNN), 
using TensorFlow as the backend (Fig. 2b).53, 54 To describe the 
characteristics of different bimetallic alloys, atomic and 
electronic information of the adsorption environment were 
described using physical indicators, including: electronegativity, 
d-orbital information, d-band centre (average energy of d-
electrons) of the monometallic element, and atomic 
information. The completed list of these variables are shown in 

Table S2. After feature selection analysis (as discussed later in 
this paper), these indicators were used as the inputs 
(independent variables) of the BPNN model. 462 DFT-calculated 
H binding energy data after normalization were randomly split 
into training and test sets in different ratios. Adaptive 
momentum optimizer algorithm with mean squared error 
(MEA) as the loss function was adopted for ML model training. 
Rectified linear unit was applied as the transfer function 
between layers. In addition, to avoid over-fitting, L2 
regularization was adopted with a coefficient of 0.001. Cross-
validation and sensitivity tests were performed to confirm the 
robustness of the models.

Fig. 1 (a) Schematic pictures of the random sampling method for (100) bimetallic alloys. Red squares represent the four-fold ensemble which 
provides the specific adsorption environment of H. (b) Algorithmic architecture of the BPNN model employed for this study.

3. Results and Discussion
3.1 H Binding Energies

H binding energies were calculated at the four-fold sites 
consisting of four neighbouring transition metal atoms, with the 
reason that a four-fold ensemble is the smallest repeat unit that 
determines the adsorption environment of H on a (100) surface.55 
According to the composition of these four neighbouring atoms, 
there are six types of ensembles for H adsorption based on the 
symmetry of the alloying elements, as shown in Fig. 2a. In detail, 
these six binding sites are defined as: M4N0, M3N1, M2N2-d (diagonal), 
M2N2-p (parallel), M1N3, and M0N4, respectively (where M represents 
strong-binding element, Pd and Pt; N represents weak-binding 
element, Ag, Au, and Cu). The average binding energies of H are 
plotted in Fig. 2b-2g (with the representative binding configurations 
shown in Fig. S1). The calculated error bars (standard deviation) are 
relatively small at all of the binding sites, indicating that ensemble 

effect is still the most predominant effect for H adsorption, while the 
electronic environments outside of the ensemble (from both surface 
and subsurface) only have slight influence on the H binding. This also 
reveals that H binding energy is less dependent to the specific 
configuration of an alloy system. Our previous study also has shown 
that the binding energies at ordered alloys (e.g., intermetallic alloys) 
also fall within the error bars which calculated from random 
sampling.16 It can be clearly seen from the results that with the 
increased ratio of weak-binding element in the ensemble, H binding 
energy at PdxNy becomes monotonically weaker (i.e., more positive) 
(Fig 2b-2d). This shows that as a typical 4d transition metal, Pd-alloys 
have tunable H binding energy under various compositions. 
Interestingly, while the compositional effects are less significant in 
the binding energies at PdxAg1-x and PdxAu1-x(100), it has significant 
influence on the H bindings at PdxCu1-x(100) (Fig. 2d): lower 
composition of Pd leads to significantly stronger H bindings at all of 
the Pd-Cu ensembles. This indicates that compared to Ag and Au, Cu 
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leads to more significant electronic and strain effects on the 
adsorbate binding when they are alloyed with Pd. This is also in good 
agreement with the previous studies on PdxCu1-x(111) for nitrogen 
adoption,9 suggesting that ensemble effect is not the only significant 
effect on PdxCu1-x alloy. Compared to Pd-based alloys, Pt-based alloys 
are less tunable for H bindings, with generally similar average H 
bindings among Pt4N0, Pt3N1, and Pt2N2-p (Fig. 2e-2g). A plausible 
explanation is that Pt is a 5d transition metal, having larger d-orbitals 
which have slight misalignment when alloying with other transition 
metals, leading to a less tunable H binding. We also found similar 
phenomenon in other previously reported 5d metal alloyed (111) 
surfaces such as PtAu,4, 10 IrAg,13 and IrCu.14 Meanwhile, based on 

previous studies, coverage effect is not significant on the H binding 
energies on most of the systems alloyed with strong-binding 
metals.13, 56 Therefore, we expect that H coverage only leads to 
neglectable influence on the calculated site-specific H binding energy 
in our studied systems. 

In addition, with the same composition of the MxNy binding sites, 
binding energies of H on PtxNy are mostly weaker than those of PdxNy. 
However, given that PdxNy  has more tunable features for H binding, 
we expect that there should be more Pd-based alloy materials which 
are promising  for HER. Our catalytic modelling, which discussed later, 
will provide further analysis. 

Fig. 2 (a) Binding sites of the four-fold ensembles where H was placed for DFT optimization. (b-g) Calculated average binding energies of H 
on (b) PdxAg1-x(100), (c) PdxAu1-x(100), (d) PdxCu1-x(100), (e) PtxAg1-x(100), (f) PtxAu1-x(100), and (g) PtxCu1-x(100) (x=0.25, 0.50, and 0.75). For 
each alloy composition, more than fifteen randomly alloyed geometries were generated. Each error bar is the standard deviation calculated 
from at least three randomly sampled sites from the generated surfaces. 

3.2 HER Activity

Based on the calculated binding energies of H, we used an acidic 
HER volcano proposed by Nørskov et al.52 to analyse the catalytic 
activity of HER for different bimetallic alloys (Fig. 3). The theoretical 
current density (in the unit of A/cm2) is the indicator of the HER 
activity under the potential of 0 V vs. reversible hydrogen electrode 
with pH=0. This volcano activity plot has shown precise predictive 
power for HER in acidic media, in good agreement with many 
previous experiments.36 It can be clearly seen that, the (100) surfaces 
of PdxAg1-x and PdxAu1-x have the surface ensembles close to the peak 
of the volcano (Pd1N3 and Pd2N2-d) in all of the three compositions 
(Fig. 3a and 3b), showing outstanding site-specific HER activities. 

Given that these two active ensemble geometries are respectively 
with half- or less-Pd composition, we expect that those PdxAg1-x and 
PdxAu1-x cubic alloys with the Pd compositions of 50% or less would 
lead to the maximized amount of these active sites, leading to 
outstanding activity and turnover frequency (TOF) in experiments. In 
contrast, PdxCu1-x(100) has most of the ensembles which weakly 
adsorb H (Fig. 3c), indicative of the difficulty in the formation of H*. 
In addition to PdxAg1-x and PdxAu1-x(100), PtxAg1-x(100) also has an 
active ensemble (Pd2Ag2-d) when x=0.50 (Fig. 3d, middle frame). 
However, for other compositions and components of Pt-based alloys, 
most of their surface ensembles are at the left-leg of the HER volcano, 
indicating the poisoning of H* and poor HER activity (Fig. 3d-3f). 
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Based on the volcano model, the optimal H binding occurs when 
H binding energy reaches the peak of the HER volcano (~ -0.24 eV), 
where the reaction free energies of the two HER steps become zero. 
The binding site that drops at the left- and right-legs of the volcano 
respectively indicate the “strong-” and “weak”-binding regions. 
Therefore, we further plotted a heat matrix which was quantified by 
|H binding − target binding|, as shown in Fig. 4. In the heat matrix, a 
smaller value indicates a higher catalytic activity. Based on the results, 

there are six types of bimetallic ensembles that have the highest 
catalytic activity of HER among the examined bimetallic (100) 
surfaces: Pd2Ag2-d/Pd0.25Ag0.75, Pd1Au3/Pd0.25Au0.75, Pd2Au2-
d/Pd0.25Au0.75, Pd1Au3/Pd0.50Au0.50, Pd2Au2-d/Pd0.50Au0.50, and 
Pd2Au2-d/Pd0.75Au0.25. Meanwhile, Pd- and Pt-based bimetallic 
ensembles containing Cu show the lowest catalytic activities, which 
suggests that Cu may not be an appropriate component for HER. The 
original data can be found in the Supplementary Information. 

Fig. 3 Predicted acidic HER activity for the binding sites at (a) PdxAg1-x(100), (b) PdxAu1-x(100), (c) PdxCu1-x(100), (d) PtxAg1-x(100), (e) PtxAu1-

x(100), and (f) PtxCu1-x(100) (x=0.25, 0.50, and 0.75). The left, middle, and right frames represent the compositions where x=0.25, 0.50, and 
0.75, respectively. For each alloy composition, more than fifteen randomly alloyed geometries were generated. Each error bar is the standard 
deviation calculated from at least three randomly sampled sites from the generated surfaces.
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Fig. 4 Heat matrix of the relative binding energy of H. As indicated from the HER volcano model, the target H binding is -0.24 eV. 

3.3 Analysis of the Screened Catalysts

Based on the catalytic screening, six bimetallic alloys with high 
catalytic activities were determined. To provide more 
understandings to the enhanced activity after alloying at (100), these 
bimetallics are compared with the catalytic activities of their 
monometallic counterparts (Pd, Au, and Ag) (Fig. 5). Firstly, the free 
energy diagram of acidic HER at a potential of U = 0 V was plotted, as 
shown in Fig. 5a. The negative reaction free energies at some of the 
surfaces indicate an exothermic step for the formation of H* after a 
proton being coupled with an electron and then adsorbed on the 
surface. Meanwhile, negative free energy in this step results in an 
endothermic step in the subsequent hydrogen evolution. For Pd(100), 
this indicates that H poisoning can easily happen because the surface 
over-binds hydrogen (yellow pathway, Fig. 5a), which in turn hinders 
the hydrogen evolution step. Obviously, the bimetallic alloys of 
PdxAg1-x and PdxAu1-x(100) have lower free energy barriers than Pd, 
Au, and Ag(100), showing that the catalytic activity for HER can be 
significantly improved through the rational design of bimetallic (100) 
alloy. Moreover, due to its promising catalytic activity, we picked 
Pd2Au2-d/Pd0.75Au0.25(100) as an example to discuss the binding site, 
catalytic activity of HER, and stability. To identify the binding site of 
H on Pd2Au2-d/Pd0.75Au0.25(100), electron transfer in the adsorption 
process of H and surface electronic structure were investigated, as 
shown in Fig. 5b and 5c. According to the electron density difference 
(EDD) of H on Pd2Au2-d/Pd0.75Au0.25(100), H and the surface 
respectively act as the electron acceptor and donor. Other similar 
results on Pd and Pt(100) can be found in Fig. S2. In the surface map 
of electrostatic potential distribution (EPD) (Fig. 5c), the red and blue 

regions represent the nucleophilic and electrophilic sites, 
respectively. Obviously, the hollow site composed of two Au and two 
Pd atoms is the nucleophilic site. Considering that H acts as electron 
acceptor (Fig. 5b), it should be preferentially adsorbed on the 
nucleophilic site, which is consistent with the calculated H adsorption 
results. To further explain the catalytic activity difference among the 
(100) surfaces of PdxAu1-x, Pd, and Au, their projected density of 
states (PDOS) are plotted in Fig. 5c. Based on the calculated PDOS, 
the d-band centre (εd) of the three surfaces were calculated as -1.49, 
-1.09, and 2.29 eV for Pd2Au2-d/Pd0.75Au0.25, Pd, and Au(100), 
respectively. These suggest that the order of H binding strength 
should be Pd(100) > Pd2Au2-d/Pd0.75Au0.25(100) > Au(100), which is 
consistent with their free energy variations (Fig. 5a). The H bindings 
on the surface of Pd and Au(100) are respectively too strong and too 
weak, which result in lower catalytic activities as compared to their 
alloyed surfaces. The d electron distribution of PdxAu1-x(100) was also 
regulated through the tuning of composition. The H binding strength 
on Pd2Au2-d/Pd0.75Au0.25(100) is moderate, leading to a higher 
catalytic activity of HER which drops close to the peak of the volcano. 
Furthermore, the stability of Pd2Au2-d/Pd0.75Au0.25(100) was 
analysed using ab initio molecular dynamics (AIMD) simulation with 
10 ps at the working temperature of 300 K (Fig. 5e). There was no 
obvious fluctuation in the key bond lengths and system energies, 
suggesting that Pd2Au2-d/Pd0.75Au0.25(100) has good stability with a 
similar experimental process. In addition, the stability of Pd2Au2-
d/Pd0.75Au0.25(100) at higher temperature (400 and 500 K) were also 
studied through the AIMD simulations (Fig. S3), showing a similar 
conclusion.  
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Fig. 5 (a) Free energy diagram of acidic HER at Pd, Au, and Ag(100), and at different ensembles on PdxAg1-x and PdxAu1-x(100). Each error bar 
is the standard deviation calculated from at least three randomly sampled sites from the generated surfaces. (b) EDD of H binding on Pd2Au2-
d/Pd0.75Au0.25(100) (isosurface = 0.002 e/Å3). Red and green regions represent the increase and decrease of electrons, respectively. (c) EPD of 
Pd2Au2-d/Pd0.75Au0.25(100) (isosurface = 0.002 e/Bohr3). (d) PDOS of the binding sites at Pd2Au2-d/Pd0.75Au0.25, Au, and Pd(100). Red and blue 
regions represent the nucleophilic and electrophilic sites, respectively. (e) Energy and bond length variation of Pd2Au2-d/Pd0.75Au0.25 under 
AIMD simulations at 300 K.

3.4 ML Modelling

As an extensive section of this study, we further developed ML 
models based on our calculated database, for the rapid screening of 
out-of-sample (100) alloy catalysts. The modelling details are shown 
in Section 2.2. Before ML modelling, we performed analysis on the 
feature selection (Fig. 6), which helps to determine the most 
important input variables for the prediction of H binding energy. As 
shown in Fig. 1b, there are a number of physical features (e.g., input 
variables) that can be considered for the ML modelling (with the 
completed list of our input variables shown in Table S2). Obviously, 
there exist some slightly correlated features in the input variables 
according to the correlation map depicted in Fig. 6a. Therefore, it is 
necessary for us to make an appropriate feature reduction. To 
minimize the dimension of features, the extremely randomized trees 
(ERT) method derived by Geurts et al. 57 is one of the most commonly 
used methods to realize feature selection.58-60 Different from other 

tree-based ensemble methods, ERT chooses the cut-points to split 
each nodes fully at random.61-63 Besides, it uses the whole training 
samples to build the “tree” rather than bootstrapped samples.64, 65 
From the bias-variance perspective, introducing randomness of cut-
point combined with ensemble methods should reduce the variance 
more significantly.64, 65 Meanwhile, using the whole training samples 
can significantly reduce the bias.65, 66 Considering that it is stable and 
robust to noisy data both empirically and theoretically,57 we adopted 
it as our method for feature selection. Using this method, we ranked 
all the features and selected the top 26 features out of the total 29 
features (Fig. 6b). We determined the number of features by 
gradually increasing the number of features and observed the 
absolute mean square error (MSE) on the training data. Once we 
finished feature selection, the reduced data set were fed to our 
machine learning models. More details of the ERT method can be 
found in Ref. 57.

Fig. 6 Feature analysis of the ML model. (a) Correlation analysis of the input variables and (b) calculated feature ranking with the ERT method. 
The completed list of the input variables can be found in Table S2.  
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Using the selected features as the input variables, we 
performed BPNN modelling using our DFT database of (100) surfaces. 
As shown in Fig. 7, good accuracy can be found in both the training 
and test sets. The training and test scores with different 
combinations are all above 0.98, with the MSEs all less than 0.01. The 
average errors of ML prediction are all relatively low, with the 
predictive model approaching the DFT-PBE level. Cross-validation 
and sensitivity tests were also performed and showed robust 
modelling results using the current database, input variables, and 
BPNN hyper-parameters.54 Noted that we have performed hundreds 
of repeated training and testing of the model using the current 
database, with various hyper-parameters (e.g., different initial 
weights of the network); no significant change was found on the 
MSEs in the dataset. Based on this ML model, H binding energies on 
Ir and Ru alloys with different compositions were predicted and 
examined, as shown in the our online database.51 Among the ~900 
predicted bimetallic alloy structures, the average H binding energies 
on Ru2Ag2-d/Ru0.25Ag0.75(100) and Pt4/Ir0.75Pt0.25(100) locate at the 
HER volcano peak (-0.24 eV), suggesting that these catalysts should 
also possess high catalytic activities for HER with a zero reaction free 
energy in the HER steps (Fig. S4). Therefore, it is expected that the 
predicted catalysts can be potential candidates for HER, which is 
worthy of further experimental research. Our future research will 
further focus on the ML-assisted design of bimetallic alloy catalysts. 

We also note that there was a pioneering study which mainly 
focused on HER on intermetallic alloy systems using combined DFT 
and ML modelling.67 In our study, different from intermetallic alloys, 
we used a random sampling method to evaluate various randomly 
generated alloy structures, and analysed their average binding 
energies and variations (i.e., error bars). Previous combined 
experimental and theoretical studies showed that the study of 
random alloy structures can help better understand the 
uncertainties in an alloy catalyst synthesized by kinetically-controlled 
synthesis methods.9-11, 13, 14, 16, 68 Since many of the alloys are meta-
stable (especially for the alloys containing (100) facet), we expect 
that the study on various randomly-mixed structures are more 
representative. Also, study using intermetallic alloy surfaces 
sometimes may dismiss some alloy ensembles (e.g., the pure M4 site 
in an alloyed M-N system) due to the orderly alloyed structure. 
However, these specific sites may generally exist in an alloy catalyst 
synthesized by kinetically-controlled synthesis. But our sampling 
method, which considers all different ensemble symmetries for all 
the compositions, can help study the activity of these sites. 
Meanwhile, some of the previous studies also indicated that the 
results of intermetallic alloys also fall within the variation of our 
sampled results,4, 16 suggesting that our studied systems can provide 
generalized understandings to the nature of synthesized alloy 
catalysts.

Fig. 7 Selected representative training and testing results of DFT calculated vs. predicted H binding energies, with the data composition of 
(a,d) 90% training + 10% testing, (b,e) 80% training + 20% testing, and (c,f) 70% training + 30% testing. Other ML modelling results can be 
found in our online database.51 

4. Conclusion
In this paper, we have shown that some of the (100) 

surfaces alloyed by strong- (Pd and Pt) and weak-binding (Ag, 
Au, and Cu) transition metals can be promising HER catalysts in 
acidic media, using high-throughput DFT calculations and 

catalytic modelling. Especially, we found that the (100) surfaces 
of PdxAg1-x and PdxAu1-x have promising HER activities due to the 
presence of highly active four-fold ensembles which reach the 
peak of the HER volcano plot, compared to their monometallic 
counterparts and other evaluated alloys. Electronic and stability 
analyses were performed on the surfaces which are predicted 

Page 8 of 11Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
8 

Ju
ly

 2
02

0.
 D

ow
nl

oa
de

d 
on

 8
/1

/2
02

0 
12

:1
0:

55
 A

M
. 

View Article Online
DOI: 10.1039/D0TA04615A

https://doi.org/10.1039/d0ta04615a


Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9

Please do not adjust margins

Please do not adjust margins

with promising activities. Finally, as an extensive section, ML 
modelling was performed based on the DFT-calculated 
database for alloyed (100) structures, showing a promising 
predictive power which guarantees rapid screening of future 
bimetallic catalysts. Most importantly, this combined DFT, 
catalytic analysis, and ML modelling study suggests that the 
catalytic activity of (100) dominated catalysts for HER can be 
significantly improved through the rational design of alloy 
catalysts. We expect that this study provides helpful guideline 
for future experiments. Our Python codes, ML database, and 
optimized geometries can be found in the GitHub repository: 
https://github.com/alloycat/database. 
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