

pubs.acs.org/JPCC

Design of Single-Atom Catalysts for Hg⁰ Oxidation Using H₂O₂

Weijie Yang,* Xuelu Chen, Liugang Chen, Yajun Feng, Chongchong Wu, Xunlei Ding, Zhengyang Gao, Yanfeng Liu, and Hao Li*

Cite This: J. Phys. Chem. C 2022, 126, 21234–21242	Ø	Read Online
--	---	-------------

CESS	Metrics & More	ndations	s Supporting Information	

ABSTRACT: Hg⁰ removal is the most difficult part in mercury purification due to its insolubility in water and strong volatility. Catalytic oxidation is the main method for Hg⁰ removal. O₂ and hydrogen halides (HCl and H₂S) are common oxidants for catalytic Hg⁰ oxidation. However, previous studies showed that current catalytic oxidation routes have sluggish kinetics and may cause secondary pollution. Herein, we propose a new pathway for catalytic Hg⁰ oxidation on the surface of single-atom catalysts (SACs) using the green oxidant H₂O₂. Some potential catalysts were screened by analyzing the adsorption and activation mechanism of H₂O₂ on the surface of SACs. Spin-polarized density functional theory calculations with van der Waals corrections (DFT-D3) revealed that Zn₁-N₄-C has the lowest rate-determining step barrier (0.35 eV) among the analyzed systems. This study proposes a promising pathway for a kinetically facile catalytic Hg⁰ oxidation, providing a new option for effective Hg⁰ removal.

1. INTRODUCTION

Mercury, as a heavy metal pollutant that is easily accumulated in biological organisms and difficult to degrade, is harmful to the ecological environment and human health. Mercury emission from coal combustion is one of the major sources of mercury in the atmosphere, accounting for ~21% of anthropogenic emission sources.¹ Mercury is present in flue gas in three forms: elemental mercury (Hg⁰), oxidized mercury (Hg²⁺), and particulate mercury (Hg^P).² Hg⁰ accounts for ~80% of the total mercury and is extremely stable, which is the difficult part of flue gas mercury removal.³ At present, the main technologies for flue gas mercury removal are adsorption and catalytic oxidation,⁴ where catalytic oxidation has become an emerging topic in recent years due to its low operating cost and high removal efficiency. Therefore, it is instructive to investigate the reaction mechanism of catalytic Hg⁰ oxidation for mercury removal.

Catalysts play a critical role in catalytic oxidation reactions. Graphene-based single-atom catalysts (SACs) are widely used for atmospheric pollutant removal due to their high catalytic activity and selectivity in many reactions.^{5–7} Zhao et al.⁸ studied the adsorption of Hg⁰ by doped-graphene and found that nitrogen-doped graphene-containing Pd clusters showed promising Hg⁰ adsorption. Other reports^{9,10} analyzed catalytic Hg⁰ oxidation on graphene-based Pt SACs using O₂; they showed that the Pt/3N-GN catalyst had excellent catalytic activity for catalytic Hg⁰ oxidation, with a rate-determining step (RDS) barrier of 2.016 eV. Yang et al.^{11,12} used a combined theoretical and experimental method to analyze the reaction mechanism of Fe SACs for the catalytic Hg⁰ oxidation using O₂; they found that Fe_{SA}/DV-N₄ has the highest catalytic activity, with an RDS energy barrier of 2.34 eV. Our previous

study¹³ predicted the catalytic activity of 3d, 4d, and 5d metal SACs (in the form of metal₁– N_4 –C) for catalytic Hg⁰ oxidation by the derived volcano activity plots; the results showed that Fe₁– N_4 –C has the highest catalytic activity. However, it was found that the SACs catalyzed Hg⁰ oxidations generally have high RDS energy barriers (>2 eV). Therefore, it is particularly important to explore other strategies to oxidize Hg⁰ on SACs with more facile kinetics.

The selection of oxidant also significantly affects Hg^0 removal. In addition to O2, hydrogen halides as HCl, HBr,¹⁵ and H_2S^{16} are also used as the oxidants for Hg^0 oxidation. However, the utilization of these acidic and toxic gases will not only cause secondary pollution but also cause pipeline corrosion. Hydrogen peroxide (H_2O_2) is a green oxidant that can be reduced to thermodynamically stable H₂O in redox reactions. It was demonstrated that HO radicals generated from the gas-phase H2O2 have high reactivity on catalyst surfaces.^{17,18} Li et al.¹⁹ studied the catalytic oxidation of SO₂ on the surface of Al₂O₃ by H_2O_2 and found that H_2O_2 has the lower energy barrier of H_2O_2 decomposition (0.34 eV) and SO₂ oxidation (0.81 eV) on γ -Al₂O_{3-x}(110) surfaces. In addition, it was found that the decomposition of H₂O₂ prefers breaking the O–O bond to form two HO* on an $Fe_3O_4(110)$ surface; HO combines with Hg⁰ to form stable Hg(OH)₂

Received:September 1, 2022Revised:November 12, 2022Published:December 12, 2022

pubs.acs.org/JPCC

Article

Figure 1. (a) 3d single TM atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) considered in this study. (b, c) Top and side views of the optimized TM_1-N_3-C and TM_1-N_4-C structures. (d) Optimized adsorption geometries of H_2O_2 on TM_1-N_3-C . (e-g) Optimized adsorption geometries of H_2O_2 on TM_1-N_4-C . C, N, O, and TM atoms are denoted by brown, blue, red and purple, respectively.

which is more conducive to desorption.²⁰ Therefore, H_2O_2 has a unique advantage in Hg^0 oxidation. However, very few studies were reported regarding Hg^0 oxidation on the SACs using H_2O_2 . The reaction mechanism of H_2O_2 activation and oxidation of Hg^0 on the SACs surface was not well-understood. Therefore, it is urgently needed to study the reaction mechanism of the catalytic Hg^0 oxidation on SACs using H_2O_2 .

Herein, the activation mechanism of H_2O_2 over 3d TM_1 - N_4 -C and TM_1 - N_3 -C SACs (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) were analyzed. The reaction mechanism for Hg^0 oxidation using H_2O_2 over TM_1-N_4-C was analyzed using spin-polarized density functional theory calculations with van der Waals corrections (DFT-D3). First, the adsorption configurations of H_2O_2 on the TM_1-N_4-C and TM_1-N_3-C surfaces were analyzed. Second, the most stable dissociative adsorption configurations of H2O2 on the TM1-N4-C and TM_1-N_3-C were determined. Third, the dissociation processes of H₂O₂ on TM₁-N₄-C and TM₁-N₃-C were analyzed by *ab initio* molecular dynamics (AIMD) simulations. Fourth, the activation processes of H₂O₂ dissociation into 2HO* on the catalyst surfaces were studied. Finally, the reaction mechanism of catalytic Hg⁰ oxidation using H₂O₂ on TM_1-N_4-C (TM= Cu and Zn) and Cu₁-N₃-C were studied, and the RDS barriers were determined. Most importantly, this work discusses a potential avenue to catalytically oxidize Hg⁰ for Hg removal.

2. METHODS

All calculations were based on the spin-polarized DFT method using the Vienna *ab initio* simulation package (VASP). The

Perdew-Burke-Ernzerhof (PBE)²¹ functional and projector augmented wave (PAW) method²² were adopted for all DFT calculations. To acquire more accurate interactions between the gas molecules and catalyst surfaces, van der Waals interactions were included using the DFT-D3 framework.²³ A 5 \times 5 graphene with a vacuum layer of 15 Å was used to simulate the adjacent regions of SACs active center.²⁴ A 4×4 \times 1 Γ -centered *k*-point and 450 eV energy cutoff were adopted in geometric optimizations. A $8 \times 8 \times 1$ k-point grid with 10^{-5} eV self-consistent electron iteration as the convergence threshold was adopted to acquire electron energy ground state information.²⁵ The force convergence criteria were set to 0.02 eV/Å for each atom. The projected crystal orbital Hamiltonian population (pCOHP) method was employed to analyze the stability of chemical bonds in the system,²⁶ which was calculated using the LOBSTER package.^{27,2}

To acquire transition states of the essential elementary steps, the climbing-image nudged elastic band (CI-NEB)^{29,30} and improved dimer method (IDM)³¹ were applied. The convergence criteria for the forces were set to 0.05 eV/Å. Vibrational frequency analyses were performed to validate the minima and transition state structures, which were analyzed with the limited displacements of ± 0.02 Å. To study the adsorption strength of gas molecules on the catalyst surfaces, adsorption energy (E_{ads}) was calculated according to the following equation:

$$E_{ads} = E_{absorb} - E_{sur} - E_{gas} \tag{1}$$

Here the adsorption energy of HO* is defined by referring to half of an H_2O_2 molecule:

Table 1. Adsorption Energies (E_{ads}) and Adsorption States of H_2O_2 on the Analyzed Catalysts

catalyst	$E_{\rm ads}/{\rm eV}$	adsorption state	catalyst	$E_{\rm ads}/{\rm eV}$	adsorption state
Sc_1-N_3-C	-6.85	2HO*	Sc_1-N_4-C	-4.94	2HO*
Ti_1-N_3-C	-6.81	2HO*	Ti_1-N_4-C	-5.72	2HO*
$V_1 - N_3 - C$	-5.79	2HO*	V_1-N_4-C	-4.59	2HO*
Cr_1-N_3-C	-5.77	2HO*	Cr_1-N_4-C	-3.50	O*+H ₂ O
$Mn_1 - N_3 - C$	-5.06	2HO*	Mn_1-N_4-C	-0.14	H_2O_2
Fe_1-N_3-C	-4.24	2HO*	Fe ₁ -N ₄ -C	-0.15	H_2O_2
Co ₁ -N ₃ -C	-3.88	2HO*	Co_1-N_4-C	-0.05	H_2O_2
Ni ₁ -N ₃ -C	-3.57	2HO*	Ni_1-N_4-C	-0.01	H_2O_2
Cu ₁ -N ₃ -C	-2.61	2HO*	Cu_1-N_4-C	-0.02	H_2O_2
Zn_1-N_3-C	-2.70	2HO*	Zn_1-N_4-C	-0.16	H_2O_2

pubs.acs.org/JPCC

$$E_{ads}(OH) = E_{sur+HO} - E_{sur} - E_{H_2O_2}/2.$$
 (2)

 E_{absorb} , E_{sur} , and E_{gas} are the total energies of adsorption systems, catalyst surface, and gases, respectively. E_{sur+HO} is the total energy of the catalyst with adsorbed HO*. $E_{H_2O_2}$ is the total energy of an isolated H_2O_2 molecule.

To determine the difficulty of Hg⁰ catalytic oxidation and product desorption, reaction energy barrier (E_b) and reaction heat (ΔE) in the reaction pathways were calculated according to

$$E_b = E_{TS} - E_{IS} \tag{3}$$

$$\Delta E = E_{\rm FS} - E_{\rm IS} \tag{4}$$

where E_{IS} , E_{TS} , and E_{FS} are the total energies of the initial, transition, and final states, respectively.

The Gibbs free energy can be obtained via eq 5^{32}

$$G(T, P) = E_{ele} + ZPE + \Delta H - TS(T, P) + K_{\rm B}T \ln \frac{P}{P^0}$$
(5)

where E_{ele} is the system energy in the ground state, ZPS is the zero-correction energy, ΔH is the enthalpy variation from 0 K to a given temperature, T is the temperature and TS(T,P) is the entropy of the system acquired from vibrational frequency, K_B is the Boltzmann constant, 8.6173303 × 10⁻⁵ eV·K⁻¹, and P^0 is the standing pressure.

3. RESULTS AND DISCUSSION

3.1. Catalyst Models. Graphene has various properties through carbon vacancies and nitrogen doping engineering.³³

Figure 2. (a–d) Electronic density difference of H_2O_2 adsorption on 4 SACs (the contour lines in plots are drawn at 0.004 e/Å³ intervals) (e) Lowest unoccupied molecular orbitals (LUMO) of H_2O_2 . (f–h) Highest occupied molecular orbitals (HOMO) of Cr_1-N_4-C , V_1-N_4-C and Cu_1-N_3-C .

Figure 3. (a–d) Dissociative adsorption structures of H_2O_2 on TM_1-N_3-C and TM_1-N_4-C . *C*, *N*, *O* and TM are denoted by brown, blue, red, and purple, respectively. (e–j) Relative Gibbs free energies of the dissociative adsorption configurations of H_2O_2 on TM_1-N_4-C (TM = Mn, Fe, Co, Ni, Cu, and Zn) at 300 K.

Graphene substrates can be classified into two typical structures based on the number of carbon vacancies: singlevacancy graphene without a carbon atom and double-vacancy graphene without two adjacent carbon atoms. According to previous results, ^{34,35} SACs with four N-doped double-vacancy graphene substrates (DV-N₄) and three N-doped single-vacancy graphene substrates (SV-N₃) possess high stability. Therefore, we selected ten 3d TMs (TM = Sc-Cu, as shown Figure 1a) as the active center. SACs (TM₁-N₄-C, TM₁-N₃-C) were built by anchoring metal atoms on DV-N₄ and SV-N₃. Top and side views of the optimized SACs structures are shown in Figure 1b,c. Considering the difference between DFT calculation and experiments, we compared the Fe loading rate of the calculation model with experimental results. The Fe loading rate in the calculation model (8.7 wt %) is similar to

Figure 4. (a–d) AIMD simulations on the energy variations and structures of the dissociative adsorption processes of H_2O_2 on TM_1 – N_4 –C (TM = Mn, Fe, Co, and Ni). (e) Activation pathways of H_2O_2 on Zn_1 – N_4 –C. *C*, *N*, *O*, and Zn are denoted by brown, blue, red, and green, respectively. (f) Relative Gibbs free energies variations in the activation of H_2O_2 to HO* on SACs at 300 K.

the previous experimental study (8.9 wt %),³⁶ suggesting that our DFT calculation model is reasonable and reliable.

3.2. Adsorption of H₂O₂ on the Surface of SACs. Adsorption is usually a prerequisite for catalytic oxidation reactions.³⁷ In this study, all adsorption configurations after optimization are shown in Figure S1. The adsorption energy (E_{ads}) and adsorption state of H_2O_2 on SACs surface are shown in Table 1. H₂O₂ spontaneously dissociates onto the surface of most catalysts except several $TM_1 - N_4 - C$ (TM = Mn, Fe, Co, Ni, Cu, and Zn). The dissociation mechanisms can be divided into two types: two HO* adsorbed on the metal and one O^* adsorbed on the metal with a free H₂O molecule, which is consistent with the study by Liu et al.³⁸ Note that H_2O_2 dissociates into 2HO* on the surface of all ten TM_1 -N₃-C SACs. The adsorption geometries are shown in Figure 1d. Adsorption geometries of H_2O_2 on TM_1-N_4-C are shown in Figure 1e–g. H_2O_2 spontaneously dissociates into 2HO* on $TM_1 - N_4 - C$ (TM = Sc and Ti) and into one O* with a H₂O molecule on Cr1-N4-C. The absence of spontaneous dissociation of H_2O_2 on TM_1-N_4-C (TM = Mn, Fe, Co, Ni, Cu, and Zn) may be due to the fact that the binding strength of H₂O₂ on the catalyst surface is too weak to break the O-O bond.

pubs.acs.org/JPCC

Figure 5. (a) Adsorption energies of HO* on the SACs. (b) Calculated free energy diagrams of Hg⁰ oxidation on Zn_1-N_4-C Cu_1-N_4-C , and Cu_1-N_3-C . (c) Reaction pathways for the catalytic oxidation of Hg⁰ on Zn_1-N_4-C using H₂O₂. C, N, O, and Zn are denoted by brown, blue, red, and green, respectively. (d) Electronic density difference of IS1, TS, and IM2 on Zn_1-N_4-C surface. (The contour lines in plots are drawn at 0.004e/Å³ intervals.) (e) COHP analysis of the O–Fe bond in the desorption system. (f) COHP analysis of the O–Zn bond in IM2.

Considering the importance of electron transfer for understanding reaction mechanism,³⁹ we plotted the electronic density difference of the four adsorption configurations to visualize the electron transfer as shown in Figure 2a–d. The amount and direction of the charge transfer are marked. The O atom is surrounded by a yellow region in three dissociation configurations (Figure 2a–c), indicating that the O atom gains electrons and the metal atom loses electrons. H_2O_2 has a small charge transfer area on the Ni₁–N₄–C surface (Figure 2d), indicating that a slight charge transfer has occurred. The calculated amount of charge transfer is consistent with the results of the above analysis.

The geometrical structure of SACs and the orientation of frontier molecular orbitals are both main factors affecting the adsorption conformation of H_2O_2 on SACs surface.³⁸ As can be seen from Figure S1, both TM_1-N_3-C (TM = Sc-Zn) and TM_1-N_4-C (Sc-V) are nonplanar geometries with metal atoms standing out of the plane. The metal atoms exposed can fully contact and adsorb with OH radicals to form 2HO*. The metal atoms of TM_1-N_4-C (TM = Mn-Zn) are embedded in the graphene layer and have weak adsorption of H_2O_2 . Hence it can remain in the molecular state. Dissociative adsorption of H_2O_2 on the SACs surface is related to the orientation of the frontier orbitals.⁴⁰ To facilitate discussion,

pubs.acs.org/JPCC

catalyst	oxidant	functional	RDS energy barrier (eV)
Fe _{SA} /DV-N ₄	O ₂	PBE-D3	2.34 ¹¹
Mn-doped g-C ₃ N ₄	O ₂	PBE-D3	2.84 and 3.13 ⁴⁴
Fe ₂ , Co ₂ , Ni ₂ @g-C ₃ N ₄	O ₂	PBE-D3	2.79, 2.29, and 2.04 ⁴⁵
Pt/3N-GN	O ₂	PBE	2.0169
$Zn_1 - N_4 - C$	H_2O_2	PBE-D3	0.35
Fe_3O_4 (1 1 0)	H_2O_2	PBE	1.67^{20}
ZnO	lattice O	PW91	3.4 ⁴⁶
CuO (1 1 1)	O ₂	PW91	0.8047
CuCl ₂ /TiO ₂	Cl	PW91	3.59 ⁴⁸
CuFe ₂ O ₄	O ₂	PBE	1.2149
LaMnO ₃	HCl	PBE	0.74 ⁵⁰
MnFe ₂ O ₄	HCl	PBE	2.20 ⁵¹
RuO ₂ /TiO ₂	HCl	PW91	1.57^{52}
$RuO_2(1\ 1\ 0)$	HCl	PW91	0.94 ⁵³
CeO ₂ /TiO ₂	HCl	PBE	1.09 ⁵⁴
CeO_2 (1 1 1)	HCl	PBE	0.6255
Co ₃ O ₄	HCl	PBE	0.67 ⁵⁶
VO _x /TiO ₂	HCl	PBE	1.00 ⁵⁷
V_2O_5/TiO_2	HBr	PBE	0.69 ⁵⁸
MnO ₂	O ₂	PBE	1.86 ⁵⁹
MoS_2 (1 0 0)	HCl	PBE	0.53 ⁶⁰
MnO_2 (1 1 0)	HCl	PBE	0.69^{61}
CeO ₂ –WO ₃ /TiO ₂	HCl	PBE	0.52^{62}
Mn doped Fe ₃ O ₄ (1 1 1)	Cl	PBE	2.72 ⁶³
$V_2O_5 - TiO_2$ (001)	lattice O	PW91	1.49^{64}
δ -MnO ₂	O ₂	PW91	1.68^{65}
AgNPs	0	PBE	1.62^{66}
Cu-MOFs	Cl/Br	PBE	$1.92/1.82^{67}$
Pd (1 0 0)	HCl	PBE	0.70 ⁶⁸

Table 2. Summary	of the Catalysts,	Oxidants, DFT	' Functional, and	d RDS Energy	Barriers in	catalytic Hg	⁰ Oxidation
------------------	-------------------	---------------	-------------------	--------------	-------------	--------------	------------------------

we have selected three representative SACs (Cr_1-N_4-C , V_1-N_4-C , Cu_1-N_3-C) and plotted their highest occupied molecular orbitals (HOMO) as shown in Figure 2f-h. The HOMO of Cr_1-N_4-C and the lowest unoccupied orbitals (LUMO) of H_2O_2 (Figure 2e) are well-matched in the vertical direction. H_2O_2 on the Cr_1-N_4-C surface prefers to dissociate by vertical adsorption to form O* and H_2O . The well-matched LUMO of H_2O_2 and HOMO of SACs (V_1-N_4-C and Cu_1-N_3-C) in the horizontal direction causes H_2O_2 to prefer horizontal adsorption. H_2O_2 dissociates in the horizontal direction to form 2HO*. In summary, the geometry of SACs and the orientation of frontier molecular orbitals synergistically affect the adsorption and dissociation of H_2O_2 on the SACs surface.

3.3. Stable Dissociative Adsorption Conformation of H_2O_2 . Based on the above analyses, H_2O_2 can dissociate or exist in a molecular form on SACs. However, these structures are not necessarily the lowest-energy structures. Meanwhile, HO generated by the dissociation of H₂O₂ is more facile for Hg^0 oxidation. To determine the most stable H_2O_2 dissociative adsorption structure, we analyzed multiple dissociative adsorption geometries by DFT-D3 and the four typical configurations are denoted as A₁, B₁, A₂, and B₂ (Figure 3ad). The adsorption configuration with a lower energy was identified as the stable structure. We calculated the relative Gibbs free energies at 300 K for the two dissociated structures (Figures 3e-j and S2 and Table S1). The above analyses can be used to identify a stable dissociative adsorption structure of H₂O₂ on SACs. Stable dissociative adsorption structures are classified into the following two types: (i) H_2O_2 dissociates to

two HO* on TM₁-N₃-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and TM₁-N₄-C (TM = Sc and Ti), and (ii) H_2O_2 dissociates into one O* with a H_2O molecule on TM₁-N₄-C (TM = V, Cr, Mn, Fe, and Co). From Figure 3h, it can be seen that the ΔG for the dissociation of H_2O_2 to A_2 and B_2 on Ni₁-N₄-C is >0. This indicates that H_2O_2 cannot spontaneously dissociate on a Ni₁-N₄-C surface.

To further understand the most stable adsorption structure of H₂O₂ on the SACs surface, we plotted the PDOS plots of H₂O₂ before adsorption and two dissociated adsorption structures (A_2, B_2) on TM_1-N_4-C (TM = Mn, Fe, Co, Ni, Cu, and Zn) as shown in Figure S3. The PDOS peaks were all shifted after the adsorption of H₂O₂. The PDOS peak of the A₂-type adsorption conformation on $TM_1 - N_4 - C$ (TM = Mn, Fe, and Co) is shifted to the left (lower energy level), indicating that the A_2 -type adsorption is more stable. The PDOS peaks of the A2-type and B2-type adsorption conformations on the Ni1-N4-C surface are shifted to the right (high energy level) compared to peaks before adsorption, suggesting that H₂O₂ prefers not to dissociate on the Ni₁-N₄-C surface. The B_2 -type adsorption conformation on the TM_1 - N_4 -C (TM = Cu, Zn) surface is shifted to the left more compared to that before adsorption, indicating that the 2HO* is more stable. It is remarkable that the PDOS plot of the B₂type adsorption conformation of Zn₁-N₄-C has highly symmetric PDOS of spin-up and spin-down, suggesting that Zn₁-N₄-C may have unique properties when reacting with H_2O_2 .

3.4. AIMD Simulations. Furthermore, AIMD simulations were performed at 300 K to analyze the H_2O_2 adsorption

behavior. AIMD simulates the dissociative adsorption process of H_2O_2 on TM_1-N_4-C (Mn, Fe, Co, and Ni), as shown in Figure 4a-d (others are shown in Figure S4). Results show that H_2O_2 dissociates into 2HO* after 100 fs on TM_1-N_3-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and TM_1-N_4-C (TM = Sc and Ti). H_2O_2 dissociates into one O* with a H_2O molecule after 900 fs on TM_1-N_4-C (Cr, Mn, Fe, and Co). Similar analyses on Ni₁-N₄-C show that H_2O_2 remains a molecular state after 3000 fs. The dissociation configurations of H_2O_2 on the surface of SACs simulated by AIMD are consistent with the results from the calculated free energy diagram, providing more evidence on the dissociation behaviors of H_2O_2 .

3.5. Activation Mechanism of H₂O₂ on SACs. The stable dissociative adsorption structures of H₂O₂ on SACs were acquired based on the above thermodynamic and kinetic analyses. The aim of this work is to oxidize Hg⁰ using the HO generated by H₂O₂. Therefore, we herein consider the adsorption configuration that H₂O₂ dissociates to 2HO* on TM_1-N_3-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and TM_1-N_4-C (TM = Sc, Ti, Cu, and Zn). H_2O_2 dissociates directly into two HO* on TM_1-N_3-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and TM_1-N_4-C (TM = Sc and Ti) after structural optimization, which was also consistent with the AIMD simulations. Therefore, it can be considered that the activation of H2O2 to 2HO* on these SACs is a near barrier-free process. The initial adsorption of H_2O_2 on TM_1-N_4-C (TM = Cu and Zn) is in a molecular state, after which it dissociates into 2HO*. The transition state of H_2O_2 activation into 2HO* on TM_1-N_4-C (TM = Cu and Zn) was searched by the CI-NEB method, and the energy variations of the activation process was acquired. The energy variations of the process of H₂O₂ activation to 2HO* on SACs are shown in Figure 4f. It can be seen that the energies of the activation processes of H_2O_2 on TM_1-N_3-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and TM_1-N_4-C (TM = Sc and Ti) are significantly lowered. The activation processes of H_2O_2 on TM_1-N_4-C (TM = Cu and Zn) need to overcome the energy barriers of 0.46 and 0.11 eV, respectively. The activation pathways are shown in Figures 4e and S5. All these analyses provide important mechanistic insights to support the possibility of Hg⁰ oxidation by HO* on SACs.

In addition, we plotted the PDOS before and after activation of H_2O_2 on all catalyst surfaces, as shown in Figures S6 and S7. The d orbitals of the metal atoms are all shifted, with TM_1 – N_4 –C and TM_1 – N_3 –C (TM = Sc, Ti) shifted significantly to the right, corresponding to their more significant adsorption energy of H_2O_2 . The p orbitals of the two O atoms (O^1 and O^2) in the 2HO* type adsorption overlap significantly with the d orbitals of the metal atom, suggesting a significant interaction force between the metal atom and the HO radicals. The p orbital of the O atom (O^1) in the O*+ H_2O_2 type adsorption overlaps significantly with the d orbital of the metal atom, indicating the existence of a stable TM-O bond between the metal atom and the O atom. The results of the above analysis are consistent with the AIMD simulations, which demonstrate the stability of the dissociation adsorption structure.

3.6. Reaction Mechanism of Catalytic Hg⁰ Oxidation. The above analyses found that H_2O_2 can be activated to $2HO^*$ on the SACs, indicating that H_2O_2 can be used for the catalytic oxidation of Hg⁰. Previous studies found that combining HO with Hg⁰ can form Hg(OH)₂.^{41,42} Therefore, the reaction path is determined as follows: H_2O_2 activation generates $2HO^*$, which combines with Hg^0 to form $Hg(OH)_2$. Finally, $Hg(OH)_2$ desorbs from the catalyst surface. According to the Brønsted–Evans–Polanyi (BEP) relationship,⁴³ the transition state barrier can be well described using the adsorption energy. The formation of the oxidation product $Hg(OH)_2$ is accompanied by the desorption of an individual HO*. A higher adsorption energy of HO [$E_{ads}(OH)$] on the catalyst surface corresponds to a higher energy barrier of $Hg(OH)_2$ formation. In addition, a larger $E_{ads}(OH)$ suggests a more sluggish $Hg(OH)_2$ desorption. Therefore, we calculated $E_{ads}(OH)$ on the catalyst surfaces, as shown in Figure 5a. It can be seen that the adsorption energies of HO* on the surface of Cu_1-N_3-C , Zn_1-N_4-C , and Cu_1-N_4-C , and Cu_1-N_4-C , and Cu_1-N_4-C , for further analysis.

The reaction mechanisms of catalytic Hg⁰ oxidation on TM_1-N_4-C (TM = Cu and Zn) and Cu_1-N_3-C were studied by the CI-NEB method. The reaction path is shown in Figures 5c, S8, and S9. The activation energy barrier for H_2O_2 , the formation energy barrier, and the desorption energy barrier for Hg(OH)₂ are denoted as E_{b1} , E_{b2} , and E_{d} , respectively. The energy variations of the reaction are shown in Figure 5b. On Zn_1-N_4-C , the activation energy barrier of H_2O_2 and the formation and desorption barriers of $Hg(OH)_2$ are 0.11, 0.32, and 0.35 eV, respectively. Therefore, the RDS is $Hg(OH)_2$ desorption. In contrast, the RDS of the H₂O₂ catalyzed oxidation of Hg⁰ on Cu₁-N₄-C is the formation step of $Hg(OH)_2$ with a barrier of 0.76 eV. H_2O_2 is spontaneously activated to 2HO* on $Cu_1 - N_3 - C_1$, with $Hg(OH)_2$ desorption as the RDS (1.21 eV). Based on the above analysis, Zn_1-N_3- C has the lowest RDS barrier for catalytic Hg⁰ oxidation using H_2O_2 (0.35 eV), indicating that this catalytic oxidation process may take place at room temperature. In addition, we also plotted the electronic density differences of IS1, TS1 and IM2 as shown in Figures 5d, S8b, and S9b. Obviously, the charge is transferred from the Hg atom to the O atom during the oxidation process, providing direct evidence for the oxidation of Hg⁰. Table 2 summarizes the catalysts, oxidants, and the corresponding RDS energy barriers for catalytic Hg⁰ oxidation that have been reported in recent years; it can be seen that the RDS energy barrier for catalytic Hg⁰ oxidation on Zn₁-N₃-C using H_2O_2 is much lower than those reported in the literature. Therefore, Zn_1-N_4-C is considered to be one of the promising candidates for this important environmental reaction.

The high catalytic activity of Zn_1-N_4-C in the catalytic oxidation of Hg^0 using H_2O_2 is due to the ultralow desorption energy barrier of the oxidation products. To further investigate the bonding mechanism of Zn₁-N₄-C with oxidation products, we obtained information on the Zn-O bond by COHP (Crystal Orbital Hamilton Population) analysis. Compared to our previous study of $Fe_1-N_4-C_2^{(1)}$ there is antibonding orbital occupation in the bond of O (p)–Zn (d), as shown in Figure 5e,f. It indicates that the O-Zn bond connecting the Hg(OH)₂ to Zn_1-N_4-C is unstable, making $Hg(OH)_2$ extremely easy to desorb. Meanwhile, it also explains the ultrahigh catalytic activity of Zn_1-N_4-C . The excellent performance of Zn_1-N_4-C in the reaction is attributed to the moderate adsorption capacity, which is consistent with the Sabatier principle.⁴³ In the future, searching for moderate adsorption energy is the key to improving the catalytic activity.

4. CONCLUSION

In summary, we have studied the adsorption configurations of H_2O_2 on TM_1-N_3-C and TM_1-N_4-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), and determined the stable dissociative adsorption configurations of H₂O₂ on these SACs using spin-polarized DFT-D3 calculations. We found that the adsorption conformation is related to geometry of SACs and the orientation of the frontier molecular orbitals. The stable dissociative adsorption structure of H2O2 on TM1-N3-C (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and TM_1 - N_4 -C (TM = Sc, Ti, Cu, and Zn) is 2HO*, while the adsorption configuration on other $TM_1 - N_4 - C$ (TM = Cr, Mn, Fe, and Co) is the formation of an O* with a H_2O molecule. In addition, we selected TM₁-N₄-C (Sc, Ti, Zn, and Cu) and TM_1-N_3-C to analyze the mechanism of H_2O_2 dissociation into 2HO*. Finally, we selected Cu1-N4-C and two $TM_1{-}N_4{-}C$ (TM= Cu and Zn) to analyze the reaction mechanism of Hg⁰ oxidation using H₂O₂ and found that Zn₁- N_4 -C has an ultrahigh theoretical activity for the reaction. Meanwhile, COHP analysis revealed that the Zn-O bond between Zn₁-N₄-C and the oxidation product has obvious antibonding orbitals occupation, which makes the oxidation product extremely easy to desorb. Most importantly, this work analyses the catalytic oxidation of Hg⁰ on a variety of SACs and discusses a new strategy for Hg⁰ removal in industry.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.2c06266.

Optimized adsorption configurations of H₂O₂ on SACs (Figure S1), the relative energies of the dissociative adsorption configurations of H₂O₂ on SACs (Figure S2), calculated PDOS of the H₂O₂ on SACs surface (Figure S3), AIMD simulations on the energy variations and structures of the dissociative adsorption processes of H_2O_2 on SACs (Figure S4), initial and stable adsorption structures of H_2O_2 on SACs (Table S1), the activation pathway of H2O2 on the Cu1-N4-C surface (Figure S5). PDOS analysis of H₂O₂ on the SACs surface before and after activation (Figures S6 and S7), the reaction pathway and electronic density difference for the catalytic oxidation of Hg⁰ on Cu₁-N₃-C surface (Figure S8), and the reaction pathway and electronic density difference for the catalytic oxidation of Hg⁰ on the $Cu_1 - N_4 - C$ surface (Figure S9) (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Weijie Yang Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003 Hebei, China; Orcid.org/ 0000-0002-0232-1129; Phone: +86 0312 7522949; Email: yangwj@ncepu.edu.cn
- Hao Li Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan; orcid.org/0000-0002-7577-1366; Phone: +81-080-9363-8256; Email: li.hao.b8@tohoku.ac.jp

Authors

- Xuelu Chen Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003 Hebei, China
- Liugang Chen Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003 Hebei, China
- Yajun Feng Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003 Hebei, China
- **Chongchong Wu** CNOOC Research Institute of Refining and Petrochemicals, Beijing 102200, China
- Xunlei Ding School of Mathematics and Physics and Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China; orcid.org/ 0000-0002-9962-714X
- Zhengyang Gao Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003 Hebei, China
- Yanfeng Liu Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China; Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, North China Electric Power University, Baoding 071003 Hebei, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.2c06266

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was funded by the National Natural Science Foundation of China (Nos. 52006073, 52176104, and 92161115) and the Natural Science Foundation of Hebei (No. E2020502023). H.L. acknowledges the Center for Computational Materials Science, Institute for Materials Research, Tohoku University, for the use of MASAMUNE-IMR (Project No. 202208-SCKXX-0211) and the Institute for Solid State Physics (ISSP) at the University of Tokyo for the use of their supercomputers.

REFERENCES

(1) Driscoll, C. T.; Mason, R. P.; Chan, H. M.; Jacob, D. J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. *Environ. Sci. Technol.* **2013**, 47 (10), 4967–4983.

(2) Shen, F.; Liu, J.; Dong, Y.; Wu, D. Mercury removal by biomassderived porous carbon: Experimental and theoretical insights into the effect of H_2S . *Chem. Eng. J.* **2018**, 348, 409–415. (3) Senior, C. L.; Helble, J. J.; Sarofim, A. F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. *Fuel Process. Technol.* **2000**, 65–66, 263–288.

(4) Zhao, H.; Mu, X.; Yang, G.; George, M.; Cao, P.; Fanady, B.; Rong, S.; Gao, X.; Wu, T. Graphene-like MoS₂ containing adsorbents for Hg⁰ capture at coal-fired power plants. *Applied Energy* **2017**, 207, 254–264.

(5) Zhai, Y.; Pierre, D.; Si, R.; Deng, W.; Ferrin, P.; Nilekar, A.; Peng, G.; Herron, J.; Bell, D.; Saltsburg, H.; et al. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions. *Science (New York, N.Y.)* **2010**, *329*, 1633–1636.

(6) Zhang, H.; Sui, S.; Zheng, X.; Cao, R.; Zhang, P. One-pot synthesis of atomically dispersed Pt on MnO_2 for efficient catalytic decomposition of toluene at low temperatures. *Appl. Catal. B: Environmental* **2019**, 257, 117878.

(7) Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z.; Yang, X.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ -Al₂O₃(010) surface. *J. Am. Chem. Soc.* **2013**, *135* (34), 12634–12645.

(8) Zhao, C.; Wu, H. Density functional investigation of mercury and arsenic adsorption on nitrogen doped graphene decorated with palladium clusters: A promising heavy metal sensing material in farmland. *Appl. Surf. Sci.* 2017, 399, 55–66.

(9) Ji, W.; Meng, Y.; Fan, X.; Xiao, X.; Li, F. Theoretical insights into the oxidation of elemental mercury by O_2 on graphene-based Pt single-atom catalysts. *Chemosphere* **2022**, *297*, 134178.

(10) Ji, W.; Xiao, X.; Li, F.; Fan, X.; Meng, Y.; Fan, M. Theoretical insight into mercury species adsorption on graphene-based Pt singleatom catalysts. *RSC Adv.* **2022**, *12* (10), 5797–5806.

(11) Yang, W.; Li, L.; Zhao, M.; Huang, H.; Ding, X.; Wu, C.; Gates, I. D.; Gao, Z. Theoretical prediction of graphene-based single-atom iron as a novel catalyst for catalytic oxidation of Hg⁰ by O₂. *Appl. Surf. Sci.* **2020**, *508*, 145035.

(12) Yang, W.; Liu, X.; Chen, X.; Cao, Y.; Cui, S.; Jiao, L.; Wu, C.; Chen, C.; Fu, D.; Gates, I. D.; et al. A Sulfur-Tolerant MOF-Based Single-Atom Fe Catalyst for Efficient Oxidation of NO and Hg^0 (Adv. Mater. 20/2022). *Adv. Mater.* **2022**, 34 (20), 2270149.

(13) Yang, W.; Chen, X.; Feng, Y.; Wang, F.; Gao, Z.; Liu, Y.; Ding, X.; Li, H. Understanding trends in the mercury oxidation activity of single-atom catalysts. *Environmental Science: Nano* **2022**, *9* (6), 2041–2050.

(14) Yamaguchi, A.; Akiho, H.; Ito, S. Mercury oxidation by copper oxides in combustion flue gases. *Powder Technol.* **2008**, *180* (1), 222–226.

(15) Wang, Z.; Liu, J.; Zhang, B.; Yang, Y.; Zhang, Z.; Miao, S. Mechanism of Heterogeneous Mercury Oxidation by HBr over $V_2O_5/$ TiO₂ Catalyst. *Environ. Sci. Technol.* **2016**, *50* (10), 5398–5404.

(16) Ling, L.; Han, P.; Wang, B.; Zhang, R. Theoretical prediction of simultaneous removal efficiency of ZnO for H_2S and Hg^0 in coal gas. *Chem. Eng. J.* **2013**, 231, 388–396.

(17) Huang, X.; Ding, J.; Zhong, Q. Catalytic decomposition of H_2O_2 over Fe-based catalysts for simultaneous removal of NO_X and SO_2 . *Appl. Surf. Sci.* **2015**, *326*, 66–72.

(18) Zhao, Y.; Huang, D.; Huang, L.; Chen, Z. Hydrogen Peroxide Enhances the Oxidation of Oxygenated Volatile Organic Compounds on Mineral Dust Particles: A Case Study of Methacrolein. *Environ. Sci. Technol.* **2014**, *48* (18), 10614–10623.

(19) Li, H.-l.; Dong, F.-q.; Bian, L.; Huo, T.-t.; He, X.-c.; Zheng, F.; Lv, Z.-z.; Jiang, L.-m.; Li, B. Heterogeneous oxidation mechanism of SO₂ on γ -Al₂O₃ (110) catalyst by H₂O₂: A first-principle study. *Colloids Surf.*, A **2021**, 611, 125777.

(20) Zhou, C.; Yang, H.; Chen, J.; Qi, D.; Sun, J.; Mao, L.; Song, Z.; Sun, L. Mechanism of heterogeneous reaction between gaseous elemental mercury and H_2O_2 on Fe₃O₄ (110) surface. *Computational and Theoretical Chemistry* **2018**, 1123, 11–19.

(21) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*, 1758.

(22) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Physical review letters* **1996**, 77 (18), 3865–3868.

(23) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 2010, 132 (15), 154104.

(24) Ma, L.; Zhang, J.-M.; Xu, K.-W.; Ji, V. A first-principles study on gas sensing properties of graphene and Pd-doped graphene. *Appl. Surf. Sci.* **2015**, *343*, 121–127.

(25) Yang, W.; Huang, H.; Liu, X.; Ren, J.; Ma, K.; Pan, Z.; Ding, Z.; Ding, X.; Gao, Z. Screening the activity of single-atom catalysts for the catalytic oxidation of sulfur dioxide with a kinetic activity model. *Chem. Commun.* **2020**, *56* (78), 11657–11660.

(26) Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. *J. Phys. Chem.* **1993**, *97* (33), 8617–8624.

(27) Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. *J. Comput. Chem.* **2013**, *34* (29), 2557–2567.

(28) Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. *J. Comput. Chem.* **2016**, *37* (11), 1030–1035.

(29) Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. *J. Chem. Phys.* **2000**, *113* (22), 9978–9985.

(30) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *J. Chem. Phys.* **2000**, *113* (22), 9901–9904.

(31) Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. *J. Chem. Phys.* **2005**, *123* (22), 224101.

(32) Cao, A.; Wang, Z.; Li, H.; Nørskov, J. K. Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO_2 Hydrogenation over In_2O_3 Surfaces. *ACS Catal.* **2021**, *11* (3), 1780–1786.

(33) Zhu, L.; Wang, L.; Zhang, X.; Li, T.; Wang, Y.; Riaz, M. A.; Sui, X.; Yuan, Z.; Chen, Y. Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydro-chloride for ultrasensitive bacterial detection. *Carbon* **2020**, *159*, 185–194.

(34) Yang, W.; Xu, S.; Ma, K.; Wu, C.; Gates, I. D.; Ding, X.; Meng, W.; Gao, Z. Geometric structures, electronic characteristics, stabilities, catalytic activities, and descriptors of graphene-based single-atom catalysts. *Nano Materials Science* **2020**, *2*, 120.

(35) Yang, W.; Zhao, M.; Ding, X.; Ma, K.; Wu, C.; Gates, I. D.; Gao, Z. The effect of coordination environment on the kinetic and thermodynamic stability of single-atom iron catalysts. *Phys. Chem. Chem. Phys.* **2020**, *22* (7), 3983–3989.

(36) Zhao, L.; Zhang, Y.; Huang, L.; Liu, X.-Z.; Zhang, Q.-H.; He, C.; Wu, Z.-Y.; Zhang, L.-J.; Wu, J.; Yang, W. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. *Nat. Commun.* **2019**, *10*, 1278.

(37) Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. *Chem. Eng. J.* **2019**, 370, 1128–1153.

(38) Wang, Y.; Jia, G.; Cui, X.; Zhao, X.; Zhang, Q.; Gu, L.; Zheng, L.; Li, L. H.; Wu, Q.; Singh, D. J.; et al. Coordination Number Regulation of Molybdenum Single-Atom Nanozyme Peroxidase-like Specificity. *Chem.* **2021**, *7* (2), 436–449.

(39) Meeprasert, J.; Junkaew, A.; Rungnim, C.; Kunaseth, M.; Kungwan, N.; Promarak, V.; Namuangruk, S. Capability of defective graphene-supported Pd13 and Ag13 particles for mercury adsorption. *Appl. Surf. Sci.* **2016**, *364*, 166–175. (40) Fu, Z.; Yang, B.; Wu, R. Understanding the Activity of Single-Atom Catalysis from Frontier Orbitals. *Physical review letters* **2020**, *125* (15), 156001.

(41) Gårdfeldt, K.; Sommar, J.; Strömberg, D.; Feng, X. Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. *Atmos. Environ.* **2001**, 35 (17), 3039–3047.

(42) Wang, X.; Andrews, L. Infrared Spectrum of Hg(OH)₂ in Solid Neon and Argon. *Inorganic chemistry* **2005**, *44*, 108–113.

(43) Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis. *J. Catal.* **2004**, 224 (1), 206–217.

(44) Liu, S.; Xu, M.; Chen, Y.; Mu, X.; Yu, J.; Yang, G.; Luo, X.; Jiang, P.; Wu, T. DFT study of the oxidation of Hg^0 by O_2 on an Mndoped buckled g- C_3N_4 catalyst. *Curr. Appl. Phys.* **2022**, 40, 83–89.

(45) Liu, S.; Xu, M.; Pang, C.; Lester, E.; Wu, T. Theoretical insights of catalytic oxidation of Hg^0 on g-C₃N₄-supported Fe/Co/Ni-based bi-metallic catalysts using O₂ in coal-fired flue gas as the oxidant. *Fuel* **2021**, *306*, 121593.

(46) Ling, L.; Zhao, S.; Han, P.; Wang, B.; Zhang, R.; Fan, M. Toward predicting the mercury removal by chlorine on the ZnO surface. *Chem. Eng. J.* **2014**, *244*, 364–371.

(47) Sun, S.; Zhang, D.; Li, C.; Wang, Y.; Yang, Q. Density functional theory study of mercury adsorption and oxidation on CuO(111) surface. *Chem. Eng. J.* **2014**, *258*, 128–135.

(48) Yu, Y.; Yang, Y.; Liu, J.; Wang, Z.; Ding, J. Molecular Understanding of Heterogeneous Mercury Adsorption and Oxidation Mechanisms over the $CuCl_2/TiO_2$ Sorbent. *Ind. Eng. Chem. Res.* **2020**, 59 (27), 12610–12616.

(49) Yang, Y.; Liu, J.; Ding, J.; Yu, Y.; Zhang, J. Mercury/oxygen reaction mechanism over CuFe₂O₄ catalyst. *J. Hazard. Mater.* **2022**, 424, 127556.

(50) Wang, Z.; Liu, J.; Yang, Y.; Yu, Y.; Yan, X.; Zhang, Z. Insights into the catalytic behavior of $LaMnO_3$ perovskite for Hg^0 oxidation by HCl. *J. Hazard. Mater.* **2020**, *383*, 121156.

(51) Yang, Y.; Liu, J.; Zhang, B.; Liu, F. Density functional theory study on the heterogeneous reaction between Hg^0 and HCl over spinel-type MnFe₂O₄. *Chem. Eng. J.* **2017**, 308, 897–903.

(52) Yang, Y.; Liu, J.; Wang, Z.; Miao, S.; Ding, J.; Yu, Y.; Zhang, J. A complete catalytic reaction scheme for Hg^0 oxidation by HCl over RuO_2/TiO_2 catalyst. *J. Hazard. Mater.* **2019**, *373*, 660–670.

(53) He, W.; Ran, J.; Niu, J.; Yang, G.; Zhang, P. Mechanism insights into elemental mercury oxidation on $\text{RuO}_2(1\ 1\ 0)$ surface: A density functional study. *Appl. Surf. Sci.* **2019**, *466*, 920–927.

(54) Jiang, Y.; Zhang, G.; Liu, T.; Yang, Z.; Xu, Y.; Lin, R.; Wang, X. Complete catalytic reaction of mercury oxidation on CeO_2/TiO_2 (001) surface: A DFT study. *J. Hazard. Mater.* **2022**, 430, 128434.

(55) Zhang, B.; Liu, J.; Shen, F. Heterogeneous Mercury Oxidation by HCl over CeO₂ Catalyst: Density Functional Theory Study. *J. Phys. Chem. C* 2015, 119 (27), 15047–15055.

(56) Wang, Z.; Liu, J.; Yang, Y.; Shen, F.; Yu, Y.; Yan, X. Elucidating the mechanism of Hg^0 oxidation by chlorine species over Co_3O_4 catalyst at molecular level. *Appl. Surf. Sci.* **2020**, *513*, 145885.

(57) Shin, D.; Kim, M. H.; Han, J. W. Structure-activity relationship of VOx/TiO₂ catalysts for mercury oxidation: A DFT study. *Appl. Surf. Sci.* **2021**, *552*, 149462.

(58) Wang, Z.; Liu, J.; Zhang, B.; Yang, Y.; Zhang, Z.; Miao, S. Mechanism of Heterogeneous Mercury Oxidation by HBr over $V_2O_5/$ TiO₂ Catalyst. *Environ. Sci. Technol.* **2016**, *50* (10), 5398–5404.

(59) Wang, Z.; Liu, J.; Yang, Y.; Liu, F.; Ding, J. Heterogeneous reaction mechanism of elemental mercury oxidation by oxygen species over MnO₂ catalyst. *Proceedings of the Combustion Institute* **2019**, 37 (3), 2967–2975.

(60) Xu, Z.; Lv, X.; Chen, J.; Jiang, L.; Lai, Y.; Li, J. First principles study of adsorption and oxidation mechanism of elemental mercury by HCl over MoS_2 (100) surface. *Chem. Eng. J.* **2017**, *308*, 1225–1232.

(61) Zhang, B.; Liu, J.; Yang, Y.; Chang, M. Oxidation mechanism of elemental mercury by HCl over MnO₂ catalyst: Insights from first principles. *Chem. Eng. J.* **2015**, *280*, 354–362.

(62) Yang, Y.; Liu, J.; Zhang, B.; Zhao, Y.; Chen, X.; Shen, F. Experimental and theoretical studies of mercury oxidation over CeO₂-WO₃/TiO₂ catalysts in coal-fired flue gas. *Chem. Eng. J.* **2017**, 317, 758–765.

(63) Chen, J.; Zhu, W.; Chang, X.; Ding, D.; Zhang, T.; Zhou, C.; Wu, H.; Yang, H.; Sun, L. DFT insights to mercury species mechanism on pure and Mn doped Fe3O4(1 1 1) surfaces. *Appl. Surf. Sci.* **2020**, *514*, 145876.

(64) Gao, Y.; Li, Z. A DFT study of the Hg0 oxidation mechanism on the V_2O_5 -TiO₂ (001) surface. *Molecular Catalysis* **2017**, 433, 372–382.

(65) Zhao, H.; Ezeh, C. I.; Yin, S.; Xie, Z.; Pang, C. H.; Zheng, C.; Gao, X.; Wu, T. MoO_3 -adjusted δ -MnO₂ nanosheet for catalytic oxidation of Hg⁰ to Hg²⁺. *Appl. Catal. B: Environmental* **2020**, *263*, 117829.

(66) Yang, J.; Wang, T.; Shi, N.; Pan, W.-P. Immobilization of gaseous elemental mercury by Ag nanoparticles: A combined DFT and experimental study. *Appl. Surf. Sci.* **2022**, *591*, 153217.

(67) Zhang, Z.; Zhou, C.; Wu, H.; Liu, J.; Yang, H. Molecular study of heterogeneous mercury conversion mechanism over Cu-MOFs: Oxidation pathway and effect of halogen. *Fuel* **2021**, *290*, 120030.

(68) Zhang, B.; Liu, J.; Zhang, J.; Zheng, C.; Chang, M. Mercury oxidation mechanism on Pd(100) surface from first-principles calculations. *Chem. Eng. J.* **2014**, *237*, 344–351.