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A B S T R A C T

Currently, the iron chromium redox flow battery (ICRFB) has become a research hotspot in the energy storage
field owing to its low cost and easily-scaled-up. However, the activity of electrolyte is still ambiguous due to its
complicated solution environment. Herein, we performed a pioneering investigation on the coordination behavior
and transformation mechanism of Cr3þ in electrolyte and prediction of impurity ions impact through quantum
chemistry computations. Based on the structure and symmetry of electrostatic potential distribution, the activity
of different Cr3þ complex ions is confirmed as [Cr(H2O)5Cl]2þ > [Cr(H2O)4Cl2]þ > [Cr(H2O)6]3þ. The trans-
formation mechanism between [Cr(H2O)6]3þ and [Cr(H2O)5Cl]2þ is revealed. We find the metal impurity ions
(especially Mg2þ) can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from
[Cr(H2O)5Cl]

2þ (24.38 kcal mol�1) to [Cr(H2O)6]
3þ (16.23 kcal mol�1). The solvent radial distribution and mean

square displacement in different solvent environments are discussed and we conclude that the coordination
configuration limits the diffusivity of Cr3þ. This work provides new insights into the activity of electrolyte, laying
a fundamental sense for the electrolyte in ICRFB.
1. Introduction

Large-scale power storage plays a crucial role in the digestion of new
energy and the maintenance of grid stability.1,2 As a typical large-scale
power storage technology, the iron chromium redox flow battery
(ICRFB) has returned to the forefront of research.3–6 The high decoupling
of power and capacity achieves its design flexibility.7 In addition, the
abundance of iron and chromium metal materials along with their
micro-toxicity make ICRFB a low-cost and high security energy storage
solution.8,9 Since the first iron chromium flow model was proposed by
NASA in the 1970s, the ICRFB electrolyte has been ushered into a rapid
development stage.10
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It was found that the Cr3þ in negative electrolyte of ICRFB forms
complexes like [Cr(H2O)6]3þ, [Cr(H2O)5Cl]2þ, and [Cr(H2O)4Cl2]þ with
H2O and Cl� due to solvation effect.11,12 What's more, further research
indicated there are reactivity differences among different complexes,
more specifically, the electrode reaction rate constant for [Cr(H2O)6]3þ is
2.2 � 10�5 cm s�1 while that for [Cr(H2O)5Cl]2þ is 5.6 � 10�3 cm s�1.13

Moreover, slow transformation exists between them, especially for
[Cr(H2O)6]3þ and [Cr(H2O)5Cl]2þ.11,12 Thus, their equilibrium plays an
important role in the activity of the electrolyte. However, few explora-
tions on microscopic complexes in electrolyte have been reported since
2000. Therefore, to clarify the essence of electrolyte activity, theoretical
researches on electrolytes should be carried out urgently, including the
).
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Fig. 1. Complex ion model of Cr2þ/Cr3þ in ICRFB electrolyte: (a) Cr2þ, (b) Cr3þ. TDOS and PDOS of 3d orbital components of Cr2þ/Cr3þ in CN-6: (c) Cr(H2O)62þ, (d)
Cr(H2O)63þ. Dotted line corresponds to the HOMO energy level.

Table 1
Geometrical structure parameter and actual charged quantity of Cr2þ/Cr3þ in complex ion model and reference data in bracket (the actual bond length and bond angle
values fluctuate around the values in the table).

Valence Structure Cr–O (Å) Cr–Cl (Å) O–Cr–O (�) Cl–Cr–O (�) AIM Cr

2þ [Cr(H2O)4Cl2]0 2.10, 2.54 2.39 87, 90, 92 1.47
[Cr(H2O)5Cl]þ 2.10, 2.48 2.37 84, 87, 88 90, 94, 97 1.52
[Cr(H2O)6]2þ 2.10, 2.43 89, 91 1.59

3þ [Cr(H2O)4Cl2]þ 2.03 2.31 89, 90 1.89
[Cr(H2O)5Cl]2þ 2.01 2.28 86, 88, 90 91, 94 1.95
[Cr(H2O)6]3þ 2.00 (1.99)64 89, 90, 91 2.01
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properties of complex ions and the transformation mechanism between
them.

On the other hand, with the rapid development of materials and cat-
alysts, researches of redox flow batteries (RFB) have focused on the
preparation of electrodes and catalysts,14–19 membrane design,20–22 and
additives in the electrolyte. For example, adding NH4

þ or organic amine to
the electrolyte can effectively inhibit the deactivation of Cr3þ, so that the
electrolyte can maintain good stability and reactivity.23,24 Introducing
indium ions could catalyze the electrochemical reaction of ICRFB and
accelerate the reaction kinetics of Cr2þ/Cr3þ.25 In addition, to inhibit
hydrogen evolution, the neutral electrolytes containing metal chelating
2

agents such as PDTA or EDTA have been successfully applied in ICRFB to
replace the acidic electrolytes.26–30 However, previous researches focused
on the influence of artificial additives on the performance of electrolytes,
neglecting common impurity ions (Naþ, Kþ, Mg2þ, etc.) in the electrolyte
caused by accompanying minerals of chromium ore and processing puri-
fication.31,32 So far, there has been a lack of literature on the study of
common impurity ions in electrolytes of ICRFB, while such systematic and
comprehensive study has been conducted on all vanadium flow batteries
(VRFB).33–35 Due to the inevitability of impurity ions in the electrolyte,
studying the impact of impurity ions on the electrolyte is highly necessary
and can provide a theoretical reference for electrolyte impurity removal.



Fig. 2. (a) ESP surface of Cr3þ complex ion. The isosurface is 0.001 a.u.; blue
dot: ESPmin; yellow dot: ESPmax. (b) ESP surface schematic of [Cr(H2O)4Cl2]þ,
[Cr(H2O)5Cl]

2þ, [Cr(H2O)6]
3þ respectively. k is the electroreduction reaction

rate constant in the experiment.13 (c) Quantitative ESP distribution of Cr3þ

complex. Histogram: ESP surface area distribution; line: MPI.
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In terms of research methods, previous studies laid particular
emphasis on experiments based on material preparation, characteriza-
tion, and performance testing. Nevertheless, there is a lack of theoretical
computations and simulations to profoundly explore the ICRFB electro-
lyte. Based on the theoretical method, we can reveal molecular behaviors
and reaction mechanisms at the micro level, then map to the macroscopic
properties, and provide theoretical guidance for material design and
performance improvement.36,37 The successful application of density
functional theory (DFT) in other RFBs proves its feasibility.38–40

In this work, adopting quantum chemistry computation, the coordi-
nation behavior of the Cr2þ/Cr3þ, the transformation between
[Cr(H2O)6]3þ and [Cr(H2O)5Cl]2þ, and the diffusivity of the electrolyte
were studied step by step, taking the prediction of common impurity ions
impacts into account. Firstly, the different complex forms of Cr2þ/Cr3þ

were analyzed, and the origin of the difference in electrochemical ac-
tivity was inferred from the geometric structure and molecule surface
electrostatic potential (ESP). Secondly, through the transition state
calculation, the transformation mechanism between [Cr(H2O)6]3þ and
[Cr(H2O)5Cl]2þ was explained by interaction region indicator (IRI) in
detail and compared with the situation impurity ions participate. Finally,
based on ab initio molecular dynamics (AIMD) simulation, the distribu-
tion of solvent molecules in the electrolyte was analyzed by the radial
distribution of Cr3þ, and the diffusivity of Cr3þ in different solvent en-
vironments was studied. The objective of this study is to give theoretical
insights into the activity of the electrolyte in ICRFB and provide quali-
tative guidance preliminarily for the preparation of the electrolyte.
3

2. Methodology

2.1. Quantum chemistry computation details

All the quantum chemistry computations were performed based on
the ORCA 5.0.3 package.41–43 Geometric optimization and frequency
analysis were implemented using B3LYP hybrid functional combined
with DFT-D3 dispersion correction and def2-TZVP (-f) basis set to guar-
antee the stability of the optimized structure.44–46 All structures applied
in this paper were local minima on the potential energy surface with no
imaginary frequency. The ωB97M�V hybrid functional in conjunction
with the def2-TZVP basis set was used to calculate the self-consistent
field.47 Considering the solvation effect of metal ions in aqueous solu-
tions, a hybrid solvent model was adopted during the whole calculation,
containing explicit solvent molecules arranged as the first solvation shell
and the implicit solvent model (SMD) of water.48 When searching for the
transformation path between Cr(H2O)63þ and Cr(H2O)5Cl2þ and
analyzing the impact originating from common impurity ions in the
electrolyte, the NEB-TS method was used to ascertain and optimize the
transition state (TS) through the initial state (IS) and final state (FS),
which was verified successfully by intrinsic reaction coordinate
(IRC).49–51 All the above calculations were accelerated by the RIJCOX.52

In order to investigate the diffusivity of the electrolyte, an explicit
solvent model of 100 atoms was constructed considering the concentra-
tion ratio in the actual electrolyte with the Cr3þ as the center. An AIMD
simulation of 10 ps with the time-step of 1 fs was carried out under the
NVT ensemble,53 using the B97-3c function and the CSVR thermostat to
maintain the temperature.54 Due to the lack of lattice, the radial distri-
bution function of the system could not be obtained. Therefore, a shell
script was compiled to calculate the atomic distance between the central
chromium ion and others for obtaining the molecular distribution in the
system. ESP and IRI, etc. were all conducted with Multiwfn 3.8 code,55–59

and the visualization molecular dynamics (VMD) software was used to
draw the spatial function image and the statistics of the root mean square
displacement (RMSD) in the AIMD results.60

2.2. Electrostatic potential

ESP plays an essential role in the discussion of electrostatic interac-
tion.61 The charge distribution of molecules will generate a corre-
sponding electric potential in the surrounding space. The static
distribution generated by the static charge of molecules (including iso-
lated nucleus charge and continuous electron density), i.e., electrostatic
potential V(r), can be defined as

VðrÞ ¼
X
A

ZA

jRA � rj �
Z

ρðr'Þdr'
jr ' � rj (1)

where ZA is the nuclear charge of atom A and ρ(r') is electron density.
Through the quantitative analysis of the distribution of electrostatic po-
tential on the surface of molecules, we can obtain the dominant sites of
the electrostatic interaction between molecules and also analyze the
electrochemical behavior of molecules in the electric field. In a word,
electrostatic potential analysis is helpful to study the electrochemical
activity of molecules.

2.3. Interaction region indicator

IRI can be used to characterize the interaction between atoms, based
on the RDG function.62 It is a function of electron density ρ(r) and elec-
tron density gradient rρ(r). It can be defined as

IRIðrÞ¼ jrρðrÞj
½ρðrÞ�a (2)



Fig. 3. IRI showing the interaction between Cl� and WCN-5/WCN-6 in a neutral complex structure: (a) WCN-5-Original, WCN-5-Naþ, WCN-5-NH4
þ; (b) WCN-6-

Original, WCN-6-Naþ, CN-6-NH4
þ. Isosurface map of IRI ¼ 1.0 (unit: a.u.). (c) Binding energy of Cl� in WCN-X-Y (X ¼ 5, 6; Y¼Original, Naþ, NH4

þ, Kþ, Mg2þ, Ca2þ).
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where a ¼ 1.1. IRI analysis has the advantage of visualizing all in-
teractions existing in molecules, whether van der Waals force or chemical
bonding. In addition, we can observe the change of interaction intensity
between atoms in the reaction process, so as to grasp the core mechanism
of the reaction.
2.4. Molecular polarity index

The uneven distribution of molecular charge can be reflected in the
distribution of surface electrostatic potential, and the molecular charge
distribution determines molecular polarity. Therefore, MPI based on the
definition of molecular surface electrostatic potential can measure the
molecular polarity.63 MPI is defined as

MPI ¼ ð1=AÞ
ZZ
S

jVðrÞjdS (3)

where A is molecular surface area. It can be seen that the meaning of the
formula is to integrate the absolute value of the ESP on the whole mo-
lecular surface and to calculate the expectation of the area. The existence
of a region with very negative or positive ESP indicates that the
4

distribution of molecular charge is uneven, which also illustrates that the
molecular polarity is large, and themolecular polarity index will be large.

However, the definition of MPI is only applicable to neutral mole-
cules. For a charged system, the absolute value of ESP in the formula loses
its meaning because the whole molecule presents positive or negative
electricity. Especially when comparing the polarity between molecules
with different charges, the MPI of the molecules with high charges must
be greater than that of the molecules with low charges, but it cannot
reflect the uneven distribution of ESP. Therefore, in order to make MPI
applicable to charged systems, the definition of MPI can be corrected
with the average of ESP V (r) as follows

MPI ¼ ð1=AÞ
ZZ
S

jVðrÞ � VðrÞjdS (4)

By introducing V (r) into the definition, the ESP distribution of the
charged system is pulled to the neutral reference, guaranteeing the
applicability of MPI. The MPI of the neutral molecule [Cr(H2O)4Cl2]0

calculated by formula (3) and formula (4) in Table S1 are
30.29 kcal mol�1 and 30.31 kcal mol�1 respectively. Table S2 shows
more neutral species, and we can see this definition is also applicable to
the neutral system.



Fig. 4. Relative free energy and IRI images of complex ion transformation: (a) WCN-6 to WCN-5, (b) WCN-5 to WCN-6. (c) IRI change of WCN-6 to WCN-5 selected
Original, Naþ and NH4

þ. The interaction in a brown circle in the key interaction of Cl�. Isosurface map of IRI ¼ 1.0 (unit: a.u.).
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3. Result and discussion

3.1. Cr complex ion in the electrolyte

3.1.1. Structure characteristics of Cr2þ/Cr3þ complex ion
Three complexation forms of Cr3þ, including [Cr(H2O)4Cl2]þ,

[Cr(H2O)5Cl]2þ and [Cr(H2O)6]3þ were studied. Fig. 1a and b shows the
optimized coordinate structure of Cr2þ/Cr3þ. It is depicted that the Cr2þ/
Cr3þ forms an octahedral coordination structure with six ligands in the
solvent environment, which is also confirmed in the experiment.64

However, from the difference in structural parameters such as bond
length and bond angle shown in Table 1, the octahedral configurations of
[Cr(H2O)5Cl]2þ and [Cr(H2O)4Cl2]þ exhibit structural distortion partly.
As the Cr–Cl is larger than Cr–O and the repulsion of single Cl� on
equator H2O ligands in [Cr(H2O)5Cl]2þ, the structural symmetry follows
the order of [Cr(H2O)6]3þ > [Cr(H2O)4Cl2]þ > [Cr(H2O)5Cl]2þ. The
structural symmetry can reflect complex ion activity to a certain extent.
For example, it is difficult for the H2O ligand to detach from the complex
ion due to the consistent strength of the Cr–O coordination bond in
[Cr(H2O)6]3þ. As for [Cr(H2O)5Cl]2þ, the introduction of Cl� leads to
structural distortion of the complex, making it easier for the ligand to
detach.65 Therefore, [Cr(H2O)5Cl]2þ is more easily to be adsorbed onto
the electrode and undergoes electroreduction. Interestingly, we find a
significant difference in Cr–O length (2.10 Å and 2.43 Å) in [Cr(H2O)6]3þ
5

of Cr2þ as Table 1 shows. We can compare the PDOS of Cr2þ/Cr3þ in
Fig. 1c and d for further analysis. In Cr2þ, except for dx2�y2, the others are
staggered near the HOMO level. The uneven distribution leads to the
bonding anisotropy of Cr2þ. Conversely, the consistent distribution of
dxy, dyz and dxz in Cr3þ indicates the isotropy of bonding.

3.1.2. Electrostatic potential distribution of Cr3þ complex ion
To further account for the activity differences of three Cr3þ complex

ions, the surface ESP distributionwas plotted and analyzed quantitatively
in Fig. 2a (Cr2þ in Fig. S1). Firstly, due to different charge amounts, the
ESP distribution region of three complex ions is relatively dispersed.
Furthermore, the low ESP mainly occurs in the corresponding region of
Cl�, while the high region corresponds to the H mostly. According to this
rule, the ESP of the surface presents a uniform distribution in
[Cr(H2O)6]3þ. In [Cr(H2O)4Cl2]þ, although the existing low ESP region
corresponds to Cl�, its structure still has a certain symmetry. For the
[Cr(H2O)5Cl]2þ structure, due to its structural asymmetry and the single
Cl�, the distribution of its ESP is relatively distinct, the maximum and
minimum ESP points of [Cr(H2O)5Cl]2þ structure are distributed on the
opposite sides. Owing to the special ESP distribution structure,
[Cr(H2O)5Cl]2þ structure has the strongest polarity. Fig. 2b vividly shows
the ESP distribution characteristics of three complex ions. In the electric
field provided by the electrodes, the electric orientation of
[Cr(H2O)5Cl]2þ complex ion is more distinct as the effect of orientation



Fig. 5. (a) Model of Cr3þ in pure water. (b) H2O radial distribution centered on Cr3þ. Radial distribution of H2O centered on Cr3þ in (c) WCN-5 and (d) WCN-6. Note:
the dashed lines in (b) indicate the characteristic peaks calculated by different methods in previous literature. Red: AIMD. Blue: PBE0.68,69
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polarization, thereby improving the electric double layer.66 Under the
effect of the electric field force difference from its poles, the
[Cr(H2O)5Cl]2þ is easier to lose ligand from the coordination structure
and be adsorbed to the electrode surface, providing convenience for the
occurrence of inner sphere reaction.67

To measure the molecular polarity of complex ions quantitatively,
Fig. 2c shows the quantitative ESP distribution. The wildest distribution is
the [Cr(H2O)5Cl]2þ, with a range from 102.05 kcal mol�1 to
282.79 kcal mol�1 for Cr3þ. Based on the ESP, the molecular polarity index
(MPI) used for analysis and comparison is also shown in Fig. 2c. It displays
that the order of MPI is [Cr(H2O)5Cl]2þ > [Cr(H2O)4Cl2]þ > [Cr(H2O)6]3þ

for Cr3þ, which is basically consistent with the previous ESP analysis. The
electroreduction rate constant obtained through experiments can also
verify the above conclusion.13 Overall, the above analysis verifies the ac-
tivity difference of complex ions and clarifies the affecting factor from the
symmetry of ESP distribution.
3.2. Transformation mechanism between [Cr(H2O)5Cl]2þ and
[Cr(H2O)6]3þ

Due to the activity of complex ions [Cr(H2O)5Cl]2þ >

[Cr(H2O)4Cl2]þ > [Cr(H2O)6]3þ, it is of great necessity to reveal the
transformation mechanism between two of them for increasing the
proportion of [Cr(H2O)5Cl]2þ in the electrolyte. As the amount of
[Cr(H2O)4Cl2]þ in electrolyte is much smaller during charge/discharge
compared with [Cr(H2O)5Cl]2þ and [Cr(H2O)6]3þ, therefore, more
focus should be paid to investigate the transformation between
[Cr(H2O)5Cl]2þ and [Cr(H2O)6]3þ, as shown in the following reaction.

�
CrðH2OÞ6

�3þ þCl- ↔
�
CrðH2OÞ5Cl

�2þ þ H2O (5)

To avoid interference from charged ions with different valence states,
chloride ions are added to ensure the electrical neutrality of the system as
[Cr(H2O)6]Cl3 and [Cr(H2O)5Cl]Cl2. Based on the number of water
molecules in the first coordination layer, the complex ions are defined as
WCN-6 and WCH-5 respectively. In addition, considering the possible
coexistence of impurity ions in the reagent used for preparing electro-
lytes, the comparison of the original model and adding-impurity model
(Original, Naþ, NH4

þ, Kþ, Mg2þ, Ca2þ) also needs detailed exploration.
6

3.2.1. Interaction between Cl� and complex ions
Before the transformation, the interaction of Cl� with WCN-5 and

WCN-6 was studied (as shown in Fig. 3). Other IRI can be seen in Fig. S2.
The binding energy of Cl�withWCN-5 is generally greater than that with
WCN-6 (Fig. 3c). We can analyze the interaction strength through IRI.
Fig. 3a shows that Cl� forms a strong coordinate bond with the central
Cr3þ in WCN-5. While in WCN-6, Cl� only combines with H in H2O li-
gands, leading to a smaller binding energy of WCN-6 compared with
WCN-5. In addition, the introduction of impurity metal ions can slightly
increase the binding energy due to the interaction between impurity
metal ions and Cl�. However, NH4

þ has the opposite effect. The interac-
tion between Cl� and complex ions provides a reference for the energy
barrier changes during the subsequent transformation process.

3.2.2. Transformation mechanism between Cr(H2O)5Cl2þ and Cr(H2O)63þ

Fig. 4 shows the transformation between WCN-6 and WCN-5 while
the interaction change was analyzed using IRI. Fig. 4a shows the trans-
formation energy barrier of WCN-6 to WCN-5, except NH4

þ, the intro-
duction of impurity ions leads to an increase of energy barrier as
Mg2þ > Ca2þ > Naþ > Kþ> Original > NH4

þ, indicating that the metal
impurity ions will hinder the transformation of WCN-6 to active WCN-5,
whereas NH4

þ can promote it slightly. As for the opposite process shown
in Fig. 4b, the energy barrier follows the order of NH4

þ > Original >
Kþ > Naþ > Ca2þ >Mg2þ, which illustrates that metal impurity ions will
promote the transformation of active WCN-5 to WCN-6. Especially, Mg2þ

outstands from these metal impurity ions with a transformation energy
barrier decreasing from 24.38 kcal mol�1 to 16.23 kcal mol�1. Therefore,
metal impurity ions will boost the deactivation of electrolyte. On the
contrary, it is noted that NH4

þ results in a small increase in the energy
barrier, inhibiting the transformation to inactive WCN-6. Therefore, NH4

þ

plays a positive role in preventing the inactivation of the electrolyte,
which fits the experimental result described in previous literature.23

In Fig. 4c, the essence of this transformation is that Cl� occupies the
coordination site of H2O. During the transformation process, Cl� is
repelled by surrounding water molecules, corresponding to the energy
barrier. When metal impurity ions were introduced, taking Naþ as an
example, there was a strong electrostatic attraction between Cl� and Naþ.
This indicates that Cl� bears greater resistance in the transformation,



Fig. 6. Selected MSDs of Cr3þ in each electrolyte model: (a) WCN-5-Original, WCN-5-Kþ, WCN-5-Ca2þ, (b) WCN-6-Original, WCN-6-Kþ, WCN-6-Ca2þ. The line graphs
are the average bond length changes of Mg–O and Mg–Cl and the area graphed are the MSD of Mg2þ: (c) WCN-5, (d) WCN-6. The configuration of Mg2þ and peripheral
solvent molecules during AIMD simulation: (e) WCN-5, (f) WCN-6.
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leading to an increase in the energy barrier. Interestingly, we observe
that it is difficult for NH4

þ to interact with Cl�. Therefore, NH4
þ has little

influence on the transformation process. Similarly, we can also analyze
the reverse process of transformation (WCN-5 to WCN-6). In conclusion,
from the perspective of mutual transformation between active WCN-5
and inactive WCN-6, metal impurity ions will give rise to the inactiva-
tion of the electrolyte while NH4

þ has a slight positive effect on the stable
existence of active ions. This provides a qualitative reference for impurity
removal from the electrolyte.
7

3.3. Dynamic migration trajectory of Cr3þ

To investigate the dynamic properties and solvent distribution of the
electrolyte, the AIMD simulation was carried out based on the electrolyte
model (Fig. S7) built according to the actual concentration ratio, while
qualitatively considering the influence of impurity ions. The electrolyte
model could remain basically stable during the simulation (Fig. S8).
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3.3.1. Coordination characteristics of Cr3þ in different solvent environments
Fig. 5b displays the H2O distribution law in the Cr3þ-pure water

model (Fig. 5a): the Cr–O distance reaches the first peak near 0.2 nm,
corresponding to the first solvation shell of Cr3þ. Then, a vacuum layer
appears from 0.26 nm to 0.33 nm. The second characteristic peak appears
near 0.4 nm. The peak distribution of the Cr–O distance is consistent with
previous literature.68,69 With the increase of distance, H2O tends to be
more uniform. The obtained distribution law of H2O near Cr3þ can pro-
vide a reference for the distribution of electrolyte containing impurity
ions in ICRFB.

Fig. 5c and d shows the H2O distribution of the solvation model built
around the WCN-5 and WCN-6 of Cr3þ, respectively. It can be seen that
the Cl� and impurity ions mainly affect the second characteristic peak
and the area after it. The first solvent shell remains stable throughout the
simulation as Fig. S6 shows. The first characteristic peak ratio of the two
is approximately 6:5, matched with the coordination structure. In addi-
tion, the second characteristic peaks of WCN-6-Original and WCN-6-NH4

þ

are distorted, but the addition of metal ions can avoid such distortion.
The specific difference in solvent molecular distribution can be explained
from the perspective of the joint influence of Cr3þ and the impurity ion
solvation effect.

3.3.2. Diffusivity rate of Cr3þ in different solvent environments
As Fig. 6a shows the Cr3þ in the WCN-5-Original has the most

excellent diffusivity compared with other models. When impurity ions
exist, a significant decrease in diffusivity is detected. However, as pre-
sented in Fig. 6b, the Cr3þ in the WCN-6 does not satisfy the Stokes-
Einstein relation, showing the fluctuation of molecular motion. By
comparing the two models, it is apparent that the first solvent shell dis-
tribution of Cr3þ has a greater impact on its diffusivity. From the aspect of
coordination structure, the symmetrical solvation shell restricts the
diffusion of Cr3þ in WCN-6, which is manifested by oscillations at the
reference site. In contrast, the weak symmetry of the WCN-5 leads to the
directivity of Cr3þ diffusion, which encounters less hindrance in the
diffusion process. From the aspect of impurity ions, the impurity ions will
also form a solvation shell in the electrolyte, and limit the diffusion of
Cr3þ through it. The excellent diffusivity of Cr3þ in the WCN-5-Original
provides convenience for the rapid migration in the electrolyte, which
plays an essential role in electrolyte activity.

Interestingly, when studying the diffusion of impurity ions, the phe-
nomena found can verify the above analysis. Fig. S9 shows theMSD curve
of impurity ions. It can be found that the MSD of other systems, except
WCN-5-Mg2þ, exhibit a positive correlation with time, consistent with
the Stokes-Einstein relationship. For this purpose, WCN-5-Mg2þ and
WCN-6-Mg2þ were compared in detail. In Fig. 6c, from the average
length of Mg–O and Mg–Cl, it can be seen that the solvent shell is very
stable, greatly limiting the diffusion of Mg2þ. Moreover, after rapid
migration, Mg2þ is surrounded by a symmetric solvent shell (similar to
[Cr(H2O)4Cl2]þ) formed by two Cl� and four H2O, then no diffusion
(Fig. 6e). In contrast, the length of Mg–O and Mg–Cl shows significant
fluctuations (Fig. 6d), and there is no fixed solvent distribution around
Mg2þ (Fig. 6f), which makes the diffusion of Mg2þ freer. As can be seen
from Fig. S10, the WCN-5-Mg2þ and WCN-6-Mg2þ have different solvent
distribution characteristics. Similar conclusions about the diffusivity of
ions and their local chemical environment were also obtained in solid
electrolytes.70–72 Additionally, it proves that the first solvent shell has a
significant impact on diffusion performance; on the other hand, it illus-
trates that the solvation effect of impurity ions will interfere with the
distribution of solvent in the electrolyte, thus affecting the diffusion of
Cr3þ.

In addition, it is interesting to note that Kþ is special. In WCN-5
structures with impurity ions, the WCN-5-Kþ model has the best diffu-
sivity and can well reflect the diffusion law. In WCN-6 structures con-
taining impurity ions, Kþmakes the diffusion of Cr3þmore active. To sum
up, from the perspective of solvent shell configuration and impurity ions
solvation, it is concluded that the diffusivity of WCN-5-Original is better
8

than that of WCN-6-Original and most impurity ions will limit the
diffusion of Cr3þ. Therefore, increasing the proportion of the WCN-5
complex ion in the electrolyte is the principal goal. Considering the
coexistence of WCN-5 and WCN-6 in the actual electrolyte, it is appro-
priate to release restrictions on the Kþ removal.

4. Conclusion

In summary, to explore the coordination behavior and transformation
mechanism of Cr3þ in ICRFB electrolyte, we investigate the ESP, trans-
formation barrier, and ion diffusion characteristics of chromium complex
ion in the electrolyte. The symmetry of electrostatic potential distribution
is the origin of the activity of Cr3þ complex ions in the electrolyte. The
sequence of activity for different Cr3þ complex ions is
[Cr(H2O)5Cl]2þ > [Cr(H2O)4Cl2]þ > [Cr(H2O)6]3þ, corresponding with
the current experimental results. Except for NH4

þ, other metal impurity
ions will increase the transformation barrier from inactive WCN-6 to
active WCN-5 and reduce the reverse through the strong electrostatic
attraction with Cl�, especially for Mg2þ. We predict that metal impurity
ions have a significantly negative influence on transformation, which
results in electrolyte inactivation. Finally, through MSD, we draw a
conclusion that the Cr3þ diffusivity in the WCN-5-Original model is the
best, and the conclusion is figured out through the radial solvent distri-
bution and impurity ion solvation. We can also draw inspiration from the
above conclusions. First, to improve the activity of Cr3þ complexes, the
proportion of active WCN-5 in the electrolyte should be increased as
much as possible by introducing proper additives such as NH4Cl. In
addition, to suppress the deactivation of the electrolyte, qualitative
suggestions are proposed preliminarily for impurity removal from the
electrolyte: Mg2þ, Ca2þ and Na þ must be removed, and the requirement
for Kþ can be relaxed.
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